{"title":"多种细胞系产生一种细胞类型。","authors":"Hisato Kondoh","doi":"10.1007/978-3-031-39027-2_5","DOIUrl":null,"url":null,"abstract":"<p><p>It has long been assumed that a specific cell type arises following stepwise specification of cells corresponding to the branching of cell lineages. However, accumulating evidence indicates that multiple and even remote cell lineages can lead to the development of the same cells. Four examples giving different yet new insights will be discussed: skeletal muscle development from precursors with distinct initial histories of transcriptional regulation, lens cell development from remote lineages yet sharing basic transcription factors, blood cell development under intersectional pathways, and neural tissue development from cardiac precursors through the manipulation of just one component of epigenetic regulation. These examples provide flexible and nondogmatic perspectives on developmental cell regulation, fundamentally revising the old model relying on cell lineages.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Cell Lineages Give Rise to a Cell Type.\",\"authors\":\"Hisato Kondoh\",\"doi\":\"10.1007/978-3-031-39027-2_5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has long been assumed that a specific cell type arises following stepwise specification of cells corresponding to the branching of cell lineages. However, accumulating evidence indicates that multiple and even remote cell lineages can lead to the development of the same cells. Four examples giving different yet new insights will be discussed: skeletal muscle development from precursors with distinct initial histories of transcriptional regulation, lens cell development from remote lineages yet sharing basic transcription factors, blood cell development under intersectional pathways, and neural tissue development from cardiac precursors through the manipulation of just one component of epigenetic regulation. These examples provide flexible and nondogmatic perspectives on developmental cell regulation, fundamentally revising the old model relying on cell lineages.</p>\",\"PeriodicalId\":39320,\"journal\":{\"name\":\"Results and Problems in Cell Differentiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results and Problems in Cell Differentiation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-39027-2_5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-39027-2_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
It has long been assumed that a specific cell type arises following stepwise specification of cells corresponding to the branching of cell lineages. However, accumulating evidence indicates that multiple and even remote cell lineages can lead to the development of the same cells. Four examples giving different yet new insights will be discussed: skeletal muscle development from precursors with distinct initial histories of transcriptional regulation, lens cell development from remote lineages yet sharing basic transcription factors, blood cell development under intersectional pathways, and neural tissue development from cardiac precursors through the manipulation of just one component of epigenetic regulation. These examples provide flexible and nondogmatic perspectives on developmental cell regulation, fundamentally revising the old model relying on cell lineages.
期刊介绍:
Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.