{"title":"纤维素合成酶复合物贩运的两条道路分道扬镳。","authors":"Eskandar Mohammad, Heather E McFarlane","doi":"10.1016/j.tplants.2024.02.014","DOIUrl":null,"url":null,"abstract":"<p><p>Cellulose, an abundant and essential component of plant cell walls, is made by cellulose synthase complexes at the plasma membrane (PM). Recently, Liu et al. uncovered molecular mechanisms that suggest the existence of two distinct pathways for cellulose synthase trafficking from the Golgi apparatus to the PM.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"839-841"},"PeriodicalIF":17.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two roads diverge for cellulose synthase complex trafficking.\",\"authors\":\"Eskandar Mohammad, Heather E McFarlane\",\"doi\":\"10.1016/j.tplants.2024.02.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellulose, an abundant and essential component of plant cell walls, is made by cellulose synthase complexes at the plasma membrane (PM). Recently, Liu et al. uncovered molecular mechanisms that suggest the existence of two distinct pathways for cellulose synthase trafficking from the Golgi apparatus to the PM.</p>\",\"PeriodicalId\":23264,\"journal\":{\"name\":\"Trends in Plant Science\",\"volume\":\" \",\"pages\":\"839-841\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tplants.2024.02.014\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2024.02.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Two roads diverge for cellulose synthase complex trafficking.
Cellulose, an abundant and essential component of plant cell walls, is made by cellulose synthase complexes at the plasma membrane (PM). Recently, Liu et al. uncovered molecular mechanisms that suggest the existence of two distinct pathways for cellulose synthase trafficking from the Golgi apparatus to the PM.
期刊介绍:
Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.