细胞周期和化疗对小细胞肺癌中 ASCL1 的不同调控。

IF 4.1 2区 医学 Q2 CELL BIOLOGY
Yuning Liu, Qingzhe Wu, Bin Jiang, Tingting Hou, Chuanqiang Wu, Ming Wu, Hai Song
{"title":"细胞周期和化疗对小细胞肺癌中 ASCL1 的不同调控。","authors":"Yuning Liu, Qingzhe Wu, Bin Jiang, Tingting Hou, Chuanqiang Wu, Ming Wu, Hai Song","doi":"10.1158/1541-7786.MCR-23-0405","DOIUrl":null,"url":null,"abstract":"<p><p>Small cell lung cancer (SCLC) is an aggressive and lethal malignancy. Achaete-scute homolog 1 (ASCL1) is essential for the initiation of SCLC in mice and the development of pulmonary neuroendocrine cells (PNEC), which are the major cells of origin for SCLC. However, the regulatory mechanism of ASCL1 in SCLC remains elusive. Here, we found that ASCL1 expression gradually increases as the tumors grow in a mouse SCLC model, and is regulated by the cell cycle. Mechanistically, CDK2-CyclinA2 complex phosphorylates ASCL1, which results in increased proteasome-mediated ASCL1 protein degradation by E3 ubiquitin ligase HUWE1 during mitosis. TCF3 promotes the multisite phosphorylation of ASCL1 through the CDK2-CyclinA2 complex and the interaction between ASCL1 and TCF3 protects ASCL1 from degradation. The dissociation of TCF3 from ASCL1 during mitosis accelerates the degradation of ASCL1. In addition, chemotherapy drugs greatly reduce the transcription of ASCL1 in SCLC cells. Depletion of ASCL1 sensitizes SCLC cells to chemotherapy drugs. Together, our study demonstrates that ASCL1 is a cell-cycle-regulated protein and provides a theoretical basis for applying cell-cycle-related antitumor drugs in SCLC treatment. Implications:Our study revealed a novel regulatory mechanism of ASCL1 by cell cycle and chemotherapy drugs in SCLC. Treating patients with SCLC with a combination of ASCL1-targeting therapy and chemotherapy drugs could potentially be beneficial.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"613-624"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217739/pdf/","citationCount":"0","resultStr":"{\"title\":\"Distinct Regulation of ASCL1 by the Cell Cycle and Chemotherapy in Small Cell Lung Cancer.\",\"authors\":\"Yuning Liu, Qingzhe Wu, Bin Jiang, Tingting Hou, Chuanqiang Wu, Ming Wu, Hai Song\",\"doi\":\"10.1158/1541-7786.MCR-23-0405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small cell lung cancer (SCLC) is an aggressive and lethal malignancy. Achaete-scute homolog 1 (ASCL1) is essential for the initiation of SCLC in mice and the development of pulmonary neuroendocrine cells (PNEC), which are the major cells of origin for SCLC. However, the regulatory mechanism of ASCL1 in SCLC remains elusive. Here, we found that ASCL1 expression gradually increases as the tumors grow in a mouse SCLC model, and is regulated by the cell cycle. Mechanistically, CDK2-CyclinA2 complex phosphorylates ASCL1, which results in increased proteasome-mediated ASCL1 protein degradation by E3 ubiquitin ligase HUWE1 during mitosis. TCF3 promotes the multisite phosphorylation of ASCL1 through the CDK2-CyclinA2 complex and the interaction between ASCL1 and TCF3 protects ASCL1 from degradation. The dissociation of TCF3 from ASCL1 during mitosis accelerates the degradation of ASCL1. In addition, chemotherapy drugs greatly reduce the transcription of ASCL1 in SCLC cells. Depletion of ASCL1 sensitizes SCLC cells to chemotherapy drugs. Together, our study demonstrates that ASCL1 is a cell-cycle-regulated protein and provides a theoretical basis for applying cell-cycle-related antitumor drugs in SCLC treatment. Implications:Our study revealed a novel regulatory mechanism of ASCL1 by cell cycle and chemotherapy drugs in SCLC. Treating patients with SCLC with a combination of ASCL1-targeting therapy and chemotherapy drugs could potentially be beneficial.</p>\",\"PeriodicalId\":19095,\"journal\":{\"name\":\"Molecular Cancer Research\",\"volume\":\" \",\"pages\":\"613-624\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217739/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1541-7786.MCR-23-0405\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-23-0405","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

小细胞肺癌(SCLC)是一种侵袭性致命恶性肿瘤。Achaete-scute homolog 1(ASCL1)对小鼠SCLC的发生以及作为SCLC主要起源细胞的肺神经内分泌细胞(PNECs)的发育至关重要。然而,ASCL1在SCLC中的调控机制仍不明确。在这里,我们发现在小鼠 SCLC 模型中,ASCL1 的表达随着肿瘤的生长而逐渐增加,并受细胞周期的调控。机制上,CDK2-CyclinA2复合物使ASCL1磷酸化,从而导致有丝分裂过程中蛋白酶体介导的ASCL1蛋白降解增加,E3泛素连接酶HUWE1介导的ASCL1蛋白降解增加。TCF3 通过 CDK2-CyclinA2 复合物促进 ASCL1 的多位点磷酸化,ASCL1 和 TCF3 之间的相互作用保护 ASCL1 不被降解。有丝分裂过程中,TCF3 与 ASCL1 的解离加速了 ASCL1 的降解。此外,化疗药物会大大降低 SCLC 细胞中 ASCL1 的转录。ASCL1的消耗会使SCLC细胞对化疗药物敏感。总之,我们的研究证明了ASCL1是一种细胞周期调控蛋白,并为在SCLC治疗中应用细胞周期相关抗肿瘤药物提供了理论依据。意义:我们的研究揭示了ASCL1在SCLC中受细胞周期和化疗药物调控的新机制。用ASCL1靶向疗法和化疗药物联合治疗SCLC患者可能是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinct Regulation of ASCL1 by the Cell Cycle and Chemotherapy in Small Cell Lung Cancer.

Small cell lung cancer (SCLC) is an aggressive and lethal malignancy. Achaete-scute homolog 1 (ASCL1) is essential for the initiation of SCLC in mice and the development of pulmonary neuroendocrine cells (PNEC), which are the major cells of origin for SCLC. However, the regulatory mechanism of ASCL1 in SCLC remains elusive. Here, we found that ASCL1 expression gradually increases as the tumors grow in a mouse SCLC model, and is regulated by the cell cycle. Mechanistically, CDK2-CyclinA2 complex phosphorylates ASCL1, which results in increased proteasome-mediated ASCL1 protein degradation by E3 ubiquitin ligase HUWE1 during mitosis. TCF3 promotes the multisite phosphorylation of ASCL1 through the CDK2-CyclinA2 complex and the interaction between ASCL1 and TCF3 protects ASCL1 from degradation. The dissociation of TCF3 from ASCL1 during mitosis accelerates the degradation of ASCL1. In addition, chemotherapy drugs greatly reduce the transcription of ASCL1 in SCLC cells. Depletion of ASCL1 sensitizes SCLC cells to chemotherapy drugs. Together, our study demonstrates that ASCL1 is a cell-cycle-regulated protein and provides a theoretical basis for applying cell-cycle-related antitumor drugs in SCLC treatment. Implications:Our study revealed a novel regulatory mechanism of ASCL1 by cell cycle and chemotherapy drugs in SCLC. Treating patients with SCLC with a combination of ASCL1-targeting therapy and chemotherapy drugs could potentially be beneficial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信