{"title":"miR-133a 在 Silibinin 介导的 MCF-7 乳腺癌细胞 PI3K/AKT/mTOR 通路抑制中的作用。","authors":"Mohammadjavad Hossein-Tehrani, Roghayeh Abbasalipourkabir, Nasrin Ziamajidi","doi":"10.22099/MBRC.2024.48818.1903","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is particularly severe in women. Research highlights the crucial role of miRNAs in key cellular processes, showcasing their intricate interactions with the oncogenic PI3K/AKT/mTOR (PAM) signaling pathway and underscoring their significant role as tumor suppressors. The effect of silibinin on cell growth and survival was evaluated using an MTT assay. Bioinformatics analysis identified putative miR-133a targets inside the PAM pathway. After incubating MCF-7 cells with silibinin, we measured miR-133a, <i>EGFR</i>, <i>PI3K</i>, <i>AKT</i>, <i>PTEN</i>, and <i>mTOR</i> expression levels using qRT-PCR. Furthermore, protein expression levels of mTOR were assessed using Western blotting. The MTT experiment displayed that silibinin effectively inhibits MCF-7 cell proliferation in a time- and dose-dependent manner. Silibinin's IC<sub>50</sub> value, determined at 370 μM after 48 hours, was established. qRT-PCR analysis at this IC<sub>50</sub> concentration highlighted reduced expression of <i>EGFR</i>, <i>PI3K</i>, <i>AKT</i>, <i>PTEN</i>, and <i>mTOR</i> mRNAs, alongside increased miR-133a expression. Notably, miR-133a exhibited a negative correlation with both <i>EGFR</i> and <i>PIK3C2A</i> expression. Furthermore, western blotting confirmed silibinin's capacity to diminish p-mTOR protein levels, the ultimate element of the PAM signaling pathway. The findings enhance comprehension of silibinin's impact on PAM signaling and miR-133a expression, offering promise for targeted therapies in disrupting oncogenic pathways in MCF-7 breast cancer cells. This insight could advance breast cancer treatment strategies.</p>","PeriodicalId":19025,"journal":{"name":"Molecular Biology Research Communications","volume":"13 2","pages":"79-83"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946549/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of miR-133a in silibinin-mediated inhibition of the PI3K/AKT/mTOR pathway in MCF-7 breast carcinoma cells.\",\"authors\":\"Mohammadjavad Hossein-Tehrani, Roghayeh Abbasalipourkabir, Nasrin Ziamajidi\",\"doi\":\"10.22099/MBRC.2024.48818.1903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is particularly severe in women. Research highlights the crucial role of miRNAs in key cellular processes, showcasing their intricate interactions with the oncogenic PI3K/AKT/mTOR (PAM) signaling pathway and underscoring their significant role as tumor suppressors. The effect of silibinin on cell growth and survival was evaluated using an MTT assay. Bioinformatics analysis identified putative miR-133a targets inside the PAM pathway. After incubating MCF-7 cells with silibinin, we measured miR-133a, <i>EGFR</i>, <i>PI3K</i>, <i>AKT</i>, <i>PTEN</i>, and <i>mTOR</i> expression levels using qRT-PCR. Furthermore, protein expression levels of mTOR were assessed using Western blotting. The MTT experiment displayed that silibinin effectively inhibits MCF-7 cell proliferation in a time- and dose-dependent manner. Silibinin's IC<sub>50</sub> value, determined at 370 μM after 48 hours, was established. qRT-PCR analysis at this IC<sub>50</sub> concentration highlighted reduced expression of <i>EGFR</i>, <i>PI3K</i>, <i>AKT</i>, <i>PTEN</i>, and <i>mTOR</i> mRNAs, alongside increased miR-133a expression. Notably, miR-133a exhibited a negative correlation with both <i>EGFR</i> and <i>PIK3C2A</i> expression. Furthermore, western blotting confirmed silibinin's capacity to diminish p-mTOR protein levels, the ultimate element of the PAM signaling pathway. The findings enhance comprehension of silibinin's impact on PAM signaling and miR-133a expression, offering promise for targeted therapies in disrupting oncogenic pathways in MCF-7 breast cancer cells. This insight could advance breast cancer treatment strategies.</p>\",\"PeriodicalId\":19025,\"journal\":{\"name\":\"Molecular Biology Research Communications\",\"volume\":\"13 2\",\"pages\":\"79-83\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology Research Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22099/MBRC.2024.48818.1903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Research Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22099/MBRC.2024.48818.1903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The role of miR-133a in silibinin-mediated inhibition of the PI3K/AKT/mTOR pathway in MCF-7 breast carcinoma cells.
Breast cancer is particularly severe in women. Research highlights the crucial role of miRNAs in key cellular processes, showcasing their intricate interactions with the oncogenic PI3K/AKT/mTOR (PAM) signaling pathway and underscoring their significant role as tumor suppressors. The effect of silibinin on cell growth and survival was evaluated using an MTT assay. Bioinformatics analysis identified putative miR-133a targets inside the PAM pathway. After incubating MCF-7 cells with silibinin, we measured miR-133a, EGFR, PI3K, AKT, PTEN, and mTOR expression levels using qRT-PCR. Furthermore, protein expression levels of mTOR were assessed using Western blotting. The MTT experiment displayed that silibinin effectively inhibits MCF-7 cell proliferation in a time- and dose-dependent manner. Silibinin's IC50 value, determined at 370 μM after 48 hours, was established. qRT-PCR analysis at this IC50 concentration highlighted reduced expression of EGFR, PI3K, AKT, PTEN, and mTOR mRNAs, alongside increased miR-133a expression. Notably, miR-133a exhibited a negative correlation with both EGFR and PIK3C2A expression. Furthermore, western blotting confirmed silibinin's capacity to diminish p-mTOR protein levels, the ultimate element of the PAM signaling pathway. The findings enhance comprehension of silibinin's impact on PAM signaling and miR-133a expression, offering promise for targeted therapies in disrupting oncogenic pathways in MCF-7 breast cancer cells. This insight could advance breast cancer treatment strategies.
期刊介绍:
“Molecular Biology Research Communications” (MBRC) is an international journal of Molecular Biology. It is published quarterly by Shiraz University (Iran). The MBRC is a fully peer-reviewed journal. The journal welcomes submission of Original articles, Short communications, Invited review articles, and Letters to the Editor which meets the general criteria of significance and scientific excellence in all fields of “Molecular Biology”.