Hong Nhung Pham, Thi Dung Nhi Than, Hoang Anh Nguyen, Dinh Hoa Vu, Thanh Huong Phung, Tiep Khac Nguyen
{"title":"越南一家三甲医院肺炎克雷伯菌的抗生素耐药性、生物膜形成和持久性表型:聚焦阿米卡星。","authors":"Hong Nhung Pham, Thi Dung Nhi Than, Hoang Anh Nguyen, Dinh Hoa Vu, Thanh Huong Phung, Tiep Khac Nguyen","doi":"10.1089/mdr.2023.0267","DOIUrl":null,"url":null,"abstract":"<p><p><i>Klebsiella pneumoniae</i> stands out as a major opportunistic pathogen responsible for both hospital- and community-acquired bacterial infections. This study comprehensively assesses the antibiotic resistance, amikacin persistent patterns, and biofilm-forming ability of 247 isolates of <i>K. pneumoniae</i> obtained from an intensive care unit of a tertiary hospital in Vietnam. Microdilution assays, conducted on a 96-well plate, determined the minimum inhibitory concentrations (MICs) of amikacin. Susceptibility data for other antibiotics were gathered from the antibiogram profile. Stationary-phase bacteria were exposed to 50 × MIC, and viable bacteria counts were measured to determine amikacin persistence. Biofilm forming capacity on 96-well polystyrene surfaces was assessed by biomass and viable bacteria. The prevalence of resistance was notably high across most antibiotics, with 64.8% classified as carbapenem-resistant <i>K. pneumoniae</i> and 81.4% as multidrug resistant. Amikacin, however, exhibited a relatively low rate of resistance. Of the isolates, 58.2% demonstrated a moderate to strong biofilm formation capacity, and these were found to be poorly responsive to amikacin. <i>K. pneumoniae</i> reveals a significant inclination for amikacin persistence, with ∼45% of isolates displaying an antibiotic antibiotic-survival ratio exceeding 10%. The study sheds light on challenges in treating of <i>K. pneumoniae</i> infection in Vietnam, encompassing a high prevalence of antibiotic resistance, a substantial ability to form biofilm, and a notable rate of antibiotic persistence.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"203-209"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibiotic Resistance, Biofilm Formation, and Persistent Phenotype of <i>Klebsiella pneumoniae</i> in a Vietnamese Tertiary Hospital: A Focus on Amikacin.\",\"authors\":\"Hong Nhung Pham, Thi Dung Nhi Than, Hoang Anh Nguyen, Dinh Hoa Vu, Thanh Huong Phung, Tiep Khac Nguyen\",\"doi\":\"10.1089/mdr.2023.0267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Klebsiella pneumoniae</i> stands out as a major opportunistic pathogen responsible for both hospital- and community-acquired bacterial infections. This study comprehensively assesses the antibiotic resistance, amikacin persistent patterns, and biofilm-forming ability of 247 isolates of <i>K. pneumoniae</i> obtained from an intensive care unit of a tertiary hospital in Vietnam. Microdilution assays, conducted on a 96-well plate, determined the minimum inhibitory concentrations (MICs) of amikacin. Susceptibility data for other antibiotics were gathered from the antibiogram profile. Stationary-phase bacteria were exposed to 50 × MIC, and viable bacteria counts were measured to determine amikacin persistence. Biofilm forming capacity on 96-well polystyrene surfaces was assessed by biomass and viable bacteria. The prevalence of resistance was notably high across most antibiotics, with 64.8% classified as carbapenem-resistant <i>K. pneumoniae</i> and 81.4% as multidrug resistant. Amikacin, however, exhibited a relatively low rate of resistance. Of the isolates, 58.2% demonstrated a moderate to strong biofilm formation capacity, and these were found to be poorly responsive to amikacin. <i>K. pneumoniae</i> reveals a significant inclination for amikacin persistence, with ∼45% of isolates displaying an antibiotic antibiotic-survival ratio exceeding 10%. The study sheds light on challenges in treating of <i>K. pneumoniae</i> infection in Vietnam, encompassing a high prevalence of antibiotic resistance, a substantial ability to form biofilm, and a notable rate of antibiotic persistence.</p>\",\"PeriodicalId\":18701,\"journal\":{\"name\":\"Microbial drug resistance\",\"volume\":\" \",\"pages\":\"203-209\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial drug resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/mdr.2023.0267\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/mdr.2023.0267","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Antibiotic Resistance, Biofilm Formation, and Persistent Phenotype of Klebsiella pneumoniae in a Vietnamese Tertiary Hospital: A Focus on Amikacin.
Klebsiella pneumoniae stands out as a major opportunistic pathogen responsible for both hospital- and community-acquired bacterial infections. This study comprehensively assesses the antibiotic resistance, amikacin persistent patterns, and biofilm-forming ability of 247 isolates of K. pneumoniae obtained from an intensive care unit of a tertiary hospital in Vietnam. Microdilution assays, conducted on a 96-well plate, determined the minimum inhibitory concentrations (MICs) of amikacin. Susceptibility data for other antibiotics were gathered from the antibiogram profile. Stationary-phase bacteria were exposed to 50 × MIC, and viable bacteria counts were measured to determine amikacin persistence. Biofilm forming capacity on 96-well polystyrene surfaces was assessed by biomass and viable bacteria. The prevalence of resistance was notably high across most antibiotics, with 64.8% classified as carbapenem-resistant K. pneumoniae and 81.4% as multidrug resistant. Amikacin, however, exhibited a relatively low rate of resistance. Of the isolates, 58.2% demonstrated a moderate to strong biofilm formation capacity, and these were found to be poorly responsive to amikacin. K. pneumoniae reveals a significant inclination for amikacin persistence, with ∼45% of isolates displaying an antibiotic antibiotic-survival ratio exceeding 10%. The study sheds light on challenges in treating of K. pneumoniae infection in Vietnam, encompassing a high prevalence of antibiotic resistance, a substantial ability to form biofilm, and a notable rate of antibiotic persistence.
期刊介绍:
Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports.
MDR coverage includes:
Molecular biology of resistance mechanisms
Virulence genes and disease
Molecular epidemiology
Drug design
Infection control.