Shen Lv, Zhi-Peng He, Guang-Mao Liu, Sheng-Shou Hu
{"title":"用于评估叶轮护罩对离心血泵血栓形成可能性影响的多成分模型。","authors":"Shen Lv, Zhi-Peng He, Guang-Mao Liu, Sheng-Shou Hu","doi":"10.1177/03913988241239456","DOIUrl":null,"url":null,"abstract":"<p><p>Centrifugal blood pumps can be used for treating heart failure patients. However, pump thrombosis has remained one of the complications that trouble clinical treatment. This study analyzed the effect of impeller shroud on the thrombosis risk of the blood pump, and predicted areas prone to thrombosis. Multi-constituent transport equations were presented, considering mechanical activation and biochemical activation. It was found that activated platelets concentration can increase with shear stress and adenosine diphosphate(ADP) concentration increasing, and the highest risk of thrombosis inside the blood pump was under extracorporeal membrane oxygenation (ECMO) mode. Under the same condition, ADP concentration and thrombosis index of semi-shroud impeller can increase by 7.3% and 7.2% compared to the closed-shroud impeller. The main reason for the increase in thrombosis risk was owing to elevated scalar shear stress and more coagulation promoting factor-ADP released. The regions with higher thrombosis potential were in the center hole, top and bottom clearance. As a novelty, the findings revealed that impeller shroud can influence mechanical and biochemical activation factors. It is useful for identifying potential risk regions of thrombus formation based on relative comparisons.</p>","PeriodicalId":13932,"journal":{"name":"International Journal of Artificial Organs","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-constituent model for assessing the effect of impeller shroud on the thrombosis potential of a centrifugal blood pump.\",\"authors\":\"Shen Lv, Zhi-Peng He, Guang-Mao Liu, Sheng-Shou Hu\",\"doi\":\"10.1177/03913988241239456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Centrifugal blood pumps can be used for treating heart failure patients. However, pump thrombosis has remained one of the complications that trouble clinical treatment. This study analyzed the effect of impeller shroud on the thrombosis risk of the blood pump, and predicted areas prone to thrombosis. Multi-constituent transport equations were presented, considering mechanical activation and biochemical activation. It was found that activated platelets concentration can increase with shear stress and adenosine diphosphate(ADP) concentration increasing, and the highest risk of thrombosis inside the blood pump was under extracorporeal membrane oxygenation (ECMO) mode. Under the same condition, ADP concentration and thrombosis index of semi-shroud impeller can increase by 7.3% and 7.2% compared to the closed-shroud impeller. The main reason for the increase in thrombosis risk was owing to elevated scalar shear stress and more coagulation promoting factor-ADP released. The regions with higher thrombosis potential were in the center hole, top and bottom clearance. As a novelty, the findings revealed that impeller shroud can influence mechanical and biochemical activation factors. It is useful for identifying potential risk regions of thrombus formation based on relative comparisons.</p>\",\"PeriodicalId\":13932,\"journal\":{\"name\":\"International Journal of Artificial Organs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Artificial Organs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03913988241239456\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Artificial Organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03913988241239456","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A multi-constituent model for assessing the effect of impeller shroud on the thrombosis potential of a centrifugal blood pump.
Centrifugal blood pumps can be used for treating heart failure patients. However, pump thrombosis has remained one of the complications that trouble clinical treatment. This study analyzed the effect of impeller shroud on the thrombosis risk of the blood pump, and predicted areas prone to thrombosis. Multi-constituent transport equations were presented, considering mechanical activation and biochemical activation. It was found that activated platelets concentration can increase with shear stress and adenosine diphosphate(ADP) concentration increasing, and the highest risk of thrombosis inside the blood pump was under extracorporeal membrane oxygenation (ECMO) mode. Under the same condition, ADP concentration and thrombosis index of semi-shroud impeller can increase by 7.3% and 7.2% compared to the closed-shroud impeller. The main reason for the increase in thrombosis risk was owing to elevated scalar shear stress and more coagulation promoting factor-ADP released. The regions with higher thrombosis potential were in the center hole, top and bottom clearance. As a novelty, the findings revealed that impeller shroud can influence mechanical and biochemical activation factors. It is useful for identifying potential risk regions of thrombus formation based on relative comparisons.
期刊介绍:
The International Journal of Artificial Organs (IJAO) publishes peer-reviewed research and clinical, experimental and theoretical, contributions to the field of artificial, bioartificial and tissue-engineered organs. The mission of the IJAO is to foster the development and optimization of artificial, bioartificial and tissue-engineered organs, for implantation or use in procedures, to treat functional deficits of all human tissues and organs.