ICGA-GPT:吲哚青绿血管造影图像的报告生成和问题解答。

IF 3.7 2区 医学 Q1 OPHTHALMOLOGY
Xiaolan Chen, Weiyi Zhang, Ziwei Zhao, Pusheng Xu, Yingfeng Zheng, Danli Shi, Mingguang He
{"title":"ICGA-GPT:吲哚青绿血管造影图像的报告生成和问题解答。","authors":"Xiaolan Chen, Weiyi Zhang, Ziwei Zhao, Pusheng Xu, Yingfeng Zheng, Danli Shi, Mingguang He","doi":"10.1136/bjo-2023-324446","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Indocyanine green angiography (ICGA) is vital for diagnosing chorioretinal diseases, but its interpretation and patient communication require extensive expertise and time-consuming efforts. We aim to develop a bilingual ICGA report generation and question-answering (QA) system.</p><p><strong>Methods: </strong>Our dataset comprised 213 129 ICGA images from 2919 participants. The system comprised two stages: image-text alignment for report generation by a multimodal transformer architecture, and large language model (LLM)-based QA with ICGA text reports and human-input questions. Performance was assessed using both qualitative metrics (including Bilingual Evaluation Understudy (BLEU), Consensus-based Image Description Evaluation (CIDEr), Recall-Oriented Understudy for Gisting Evaluation-Longest Common Subsequence (ROUGE-L), Semantic Propositional Image Caption Evaluation (SPICE), accuracy, sensitivity, specificity, precision and F1 score) and subjective evaluation by three experienced ophthalmologists using 5-point scales (5 refers to high quality).</p><p><strong>Results: </strong>We produced 8757 ICGA reports covering 39 disease-related conditions after bilingual translation (66.7% English, 33.3% Chinese). The ICGA-GPT model's report generation performance was evaluated with BLEU scores (1-4) of 0.48, 0.44, 0.40 and 0.37; CIDEr of 0.82; ROUGE of 0.41 and SPICE of 0.18. For disease-based metrics, the average specificity, accuracy, precision, sensitivity and F1 score were 0.98, 0.94, 0.70, 0.68 and 0.64, respectively. Assessing the quality of 50 images (100 reports), three ophthalmologists achieved substantial agreement (kappa=0.723 for completeness, kappa=0.738 for accuracy), yielding scores from 3.20 to 3.55. In an interactive QA scenario involving 100 generated answers, the ophthalmologists provided scores of 4.24, 4.22 and 4.10, displaying good consistency (kappa=0.779).</p><p><strong>Conclusion: </strong>This pioneering study introduces the ICGA-GPT model for report generation and interactive QA for the first time, underscoring the potential of LLMs in assisting with automated ICGA image interpretation.</p>","PeriodicalId":9313,"journal":{"name":"British Journal of Ophthalmology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ICGA-GPT: report generation and question answering for indocyanine green angiography images.\",\"authors\":\"Xiaolan Chen, Weiyi Zhang, Ziwei Zhao, Pusheng Xu, Yingfeng Zheng, Danli Shi, Mingguang He\",\"doi\":\"10.1136/bjo-2023-324446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Indocyanine green angiography (ICGA) is vital for diagnosing chorioretinal diseases, but its interpretation and patient communication require extensive expertise and time-consuming efforts. We aim to develop a bilingual ICGA report generation and question-answering (QA) system.</p><p><strong>Methods: </strong>Our dataset comprised 213 129 ICGA images from 2919 participants. The system comprised two stages: image-text alignment for report generation by a multimodal transformer architecture, and large language model (LLM)-based QA with ICGA text reports and human-input questions. Performance was assessed using both qualitative metrics (including Bilingual Evaluation Understudy (BLEU), Consensus-based Image Description Evaluation (CIDEr), Recall-Oriented Understudy for Gisting Evaluation-Longest Common Subsequence (ROUGE-L), Semantic Propositional Image Caption Evaluation (SPICE), accuracy, sensitivity, specificity, precision and F1 score) and subjective evaluation by three experienced ophthalmologists using 5-point scales (5 refers to high quality).</p><p><strong>Results: </strong>We produced 8757 ICGA reports covering 39 disease-related conditions after bilingual translation (66.7% English, 33.3% Chinese). The ICGA-GPT model's report generation performance was evaluated with BLEU scores (1-4) of 0.48, 0.44, 0.40 and 0.37; CIDEr of 0.82; ROUGE of 0.41 and SPICE of 0.18. For disease-based metrics, the average specificity, accuracy, precision, sensitivity and F1 score were 0.98, 0.94, 0.70, 0.68 and 0.64, respectively. Assessing the quality of 50 images (100 reports), three ophthalmologists achieved substantial agreement (kappa=0.723 for completeness, kappa=0.738 for accuracy), yielding scores from 3.20 to 3.55. In an interactive QA scenario involving 100 generated answers, the ophthalmologists provided scores of 4.24, 4.22 and 4.10, displaying good consistency (kappa=0.779).</p><p><strong>Conclusion: </strong>This pioneering study introduces the ICGA-GPT model for report generation and interactive QA for the first time, underscoring the potential of LLMs in assisting with automated ICGA image interpretation.</p>\",\"PeriodicalId\":9313,\"journal\":{\"name\":\"British Journal of Ophthalmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Ophthalmology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/bjo-2023-324446\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/bjo-2023-324446","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:吲哚菁绿血管造影术(ICGA)对诊断脉络膜疾病至关重要,但其解释和患者沟通需要大量的专业知识和耗时的努力。我们的目标是开发一个双语 ICGA 报告生成和问题解答(QA)系统:我们的数据集包括来自 2919 名参与者的 213 129 张 ICGA 图像。该系统包括两个阶段:通过多模态转换器架构生成报告的图像-文本配准,以及基于大语言模型(LLM)的 ICGA 文本报告和人工输入问题的 QA。性能评估采用定性指标(包括双语评估指标(BLEU)、基于共识的图像描述评估指标(CIDEr)、以召回为导向的分类评估指标--最长共同后序(ROUGE-L)、语义命题图像标题评估指标(SPICE)、准确度、灵敏度、特异性、精确度和 F1 分数),以及由三位经验丰富的眼科医生采用 5 分制进行的主观评估(5 分代表高质量):经过双语翻译(66.7% 英语,33.3% 中文)后,我们制作了 8757 份 ICGA 报告,涵盖 39 种疾病相关情况。ICGA-GPT 模型的报告生成性能评估结果为:BLEU 分数(1-4)分别为 0.48、0.44、0.40 和 0.37;CIDEr 为 0.82;ROUGE 为 0.41;SPICE 为 0.18。疾病指标的平均特异性、准确性、精确性、灵敏度和 F1 分数分别为 0.98、0.94、0.70、0.68 和 0.64。在评估 50 幅图像(100 份报告)的质量时,三位眼科专家的意见基本一致(完整性 kappa=0.723,准确性 kappa=0.738),得分从 3.20 到 3.55 不等。在涉及 100 个生成答案的互动 QA 情景中,眼科医生分别给出了 4.24、4.22 和 4.10 分,显示出良好的一致性(kappa=0.779):这项开创性的研究首次引入了 ICGA-GPT 模型,用于生成报告和交互式质量保证,凸显了 LLM 在协助自动 ICGA 图像解读方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ICGA-GPT: report generation and question answering for indocyanine green angiography images.

Background: Indocyanine green angiography (ICGA) is vital for diagnosing chorioretinal diseases, but its interpretation and patient communication require extensive expertise and time-consuming efforts. We aim to develop a bilingual ICGA report generation and question-answering (QA) system.

Methods: Our dataset comprised 213 129 ICGA images from 2919 participants. The system comprised two stages: image-text alignment for report generation by a multimodal transformer architecture, and large language model (LLM)-based QA with ICGA text reports and human-input questions. Performance was assessed using both qualitative metrics (including Bilingual Evaluation Understudy (BLEU), Consensus-based Image Description Evaluation (CIDEr), Recall-Oriented Understudy for Gisting Evaluation-Longest Common Subsequence (ROUGE-L), Semantic Propositional Image Caption Evaluation (SPICE), accuracy, sensitivity, specificity, precision and F1 score) and subjective evaluation by three experienced ophthalmologists using 5-point scales (5 refers to high quality).

Results: We produced 8757 ICGA reports covering 39 disease-related conditions after bilingual translation (66.7% English, 33.3% Chinese). The ICGA-GPT model's report generation performance was evaluated with BLEU scores (1-4) of 0.48, 0.44, 0.40 and 0.37; CIDEr of 0.82; ROUGE of 0.41 and SPICE of 0.18. For disease-based metrics, the average specificity, accuracy, precision, sensitivity and F1 score were 0.98, 0.94, 0.70, 0.68 and 0.64, respectively. Assessing the quality of 50 images (100 reports), three ophthalmologists achieved substantial agreement (kappa=0.723 for completeness, kappa=0.738 for accuracy), yielding scores from 3.20 to 3.55. In an interactive QA scenario involving 100 generated answers, the ophthalmologists provided scores of 4.24, 4.22 and 4.10, displaying good consistency (kappa=0.779).

Conclusion: This pioneering study introduces the ICGA-GPT model for report generation and interactive QA for the first time, underscoring the potential of LLMs in assisting with automated ICGA image interpretation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
2.40%
发文量
213
审稿时长
3-6 weeks
期刊介绍: The British Journal of Ophthalmology (BJO) is an international peer-reviewed journal for ophthalmologists and visual science specialists. BJO publishes clinical investigations, clinical observations, and clinically relevant laboratory investigations related to ophthalmology. It also provides major reviews and also publishes manuscripts covering regional issues in a global context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信