{"title":"光伏能源系统 DC/DC 升压转换器的灰箱模型","authors":"Kerim Karabacak","doi":"10.1155/2024/3559456","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a grey-box model of a DC/DC boost converter for PV energy systems. The proposed model contains a white-box model part and a black-box model part together to prepare a better model for the PV boost converter. The white-box model part is used for knowledge of the circuit by mathematical equations since the black-box model part is used for unknown parameters such as temperature and electromagnetic interference. The black-box part of the proposed model is created by a nonlinear system identification of a real boost converter circuit with an artificial neural network. The precision of the mathematical model and the advantages of the fast prediction ability of the artificial neural network were used together. The proposed grey-box model is compared with the existing state-space and black-box models and experimental results. The results of the study showed that the average correlation between the proposed grey-box model output and the experimental results is 97.52%. Therefore, the proposed model can be used for analyzing DC/DC boost converter output characteristics before field applications.</p>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Grey-Box Model of a DC/DC Boost Converter for PV Energy Systems\",\"authors\":\"Kerim Karabacak\",\"doi\":\"10.1155/2024/3559456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a grey-box model of a DC/DC boost converter for PV energy systems. The proposed model contains a white-box model part and a black-box model part together to prepare a better model for the PV boost converter. The white-box model part is used for knowledge of the circuit by mathematical equations since the black-box model part is used for unknown parameters such as temperature and electromagnetic interference. The black-box part of the proposed model is created by a nonlinear system identification of a real boost converter circuit with an artificial neural network. The precision of the mathematical model and the advantages of the fast prediction ability of the artificial neural network were used together. The proposed grey-box model is compared with the existing state-space and black-box models and experimental results. The results of the study showed that the average correlation between the proposed grey-box model output and the experimental results is 97.52%. Therefore, the proposed model can be used for analyzing DC/DC boost converter output characteristics before field applications.</p>\",\"PeriodicalId\":51293,\"journal\":{\"name\":\"International Transactions on Electrical Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Transactions on Electrical Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/3559456\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3559456","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Grey-Box Model of a DC/DC Boost Converter for PV Energy Systems
This paper presents a grey-box model of a DC/DC boost converter for PV energy systems. The proposed model contains a white-box model part and a black-box model part together to prepare a better model for the PV boost converter. The white-box model part is used for knowledge of the circuit by mathematical equations since the black-box model part is used for unknown parameters such as temperature and electromagnetic interference. The black-box part of the proposed model is created by a nonlinear system identification of a real boost converter circuit with an artificial neural network. The precision of the mathematical model and the advantages of the fast prediction ability of the artificial neural network were used together. The proposed grey-box model is compared with the existing state-space and black-box models and experimental results. The results of the study showed that the average correlation between the proposed grey-box model output and the experimental results is 97.52%. Therefore, the proposed model can be used for analyzing DC/DC boost converter output characteristics before field applications.
期刊介绍:
International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems.
Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.