冻融循环对质子交换膜燃料电池膜电极组件的影响及其故障诊断方法

IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY
Fuel Cells Pub Date : 2024-03-19 DOI:10.1002/fuce.202300134
Ruixuan Zhang, Tao Chen, Rufeng Zhang, Zhongyu Gan
{"title":"冻融循环对质子交换膜燃料电池膜电极组件的影响及其故障诊断方法","authors":"Ruixuan Zhang,&nbsp;Tao Chen,&nbsp;Rufeng Zhang,&nbsp;Zhongyu Gan","doi":"10.1002/fuce.202300134","DOIUrl":null,"url":null,"abstract":"<p>In low-temperature environment, the residual water in the membrane electrode assembly (MEA) will freeze after the operation of proton exchange membrane fuel cells, which will cause damage to the MEA. In this paper, the effect of freeze–thaw cycles on MEA was studied. Six sets of MEA samples with 0, 20, 40, 60, 80, and 100 times freeze–thaw cycles were set up, and the damage on MEAs is analyzed by polarization curves, electrochemical impedance spectra, cyclic voltammetry curves, and scanning electron microscope. It was found that the freeze–thaw cycles caused degradation on MEA, and the ohmic resistance of MEA increases with the number of cycles increases before the 60 freeze–thaw cycles, and after 60 freeze–thaw cycles, a gap appeared between the proton exchange membrane (PEM) and the catalyst layer, which led to more water entering the PEM and the ohmic resistance of MEA decreased. Besides, according to the data analysis, the experimental samples are divided into three categories (normal MEA, lightly damaged MEA, and seriously damaged MEA). A classifier model combining inception network and light gradient boosting machine (LGBM) was established, and it was found that the combined model was better than inception–dense and LGBM for classification, reaching 96.89%.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of freeze–thaw cycles on membrane electrode assembly of proton exchange membrane fuel cells and its fault diagnosis method\",\"authors\":\"Ruixuan Zhang,&nbsp;Tao Chen,&nbsp;Rufeng Zhang,&nbsp;Zhongyu Gan\",\"doi\":\"10.1002/fuce.202300134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In low-temperature environment, the residual water in the membrane electrode assembly (MEA) will freeze after the operation of proton exchange membrane fuel cells, which will cause damage to the MEA. In this paper, the effect of freeze–thaw cycles on MEA was studied. Six sets of MEA samples with 0, 20, 40, 60, 80, and 100 times freeze–thaw cycles were set up, and the damage on MEAs is analyzed by polarization curves, electrochemical impedance spectra, cyclic voltammetry curves, and scanning electron microscope. It was found that the freeze–thaw cycles caused degradation on MEA, and the ohmic resistance of MEA increases with the number of cycles increases before the 60 freeze–thaw cycles, and after 60 freeze–thaw cycles, a gap appeared between the proton exchange membrane (PEM) and the catalyst layer, which led to more water entering the PEM and the ohmic resistance of MEA decreased. Besides, according to the data analysis, the experimental samples are divided into three categories (normal MEA, lightly damaged MEA, and seriously damaged MEA). A classifier model combining inception network and light gradient boosting machine (LGBM) was established, and it was found that the combined model was better than inception–dense and LGBM for classification, reaching 96.89%.</p>\",\"PeriodicalId\":12566,\"journal\":{\"name\":\"Fuel Cells\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Cells\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202300134\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202300134","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

在低温环境下,质子交换膜燃料电池运行后,膜电极组件(MEA)中的残余水会结冰,从而对 MEA 造成损坏。本文研究了冻融循环对 MEA 的影响。分别设置了 0、20、40、60、80 和 100 次冻融循环的六组 MEA 样品,并通过极化曲线、电化学阻抗谱、循环伏安曲线和扫描电子显微镜分析了 MEA 的损伤情况。结果发现,冻融循环会导致 MEA 退化,在 60 次冻融循环之前,MEA 的欧姆电阻会随着循环次数的增加而增大,而在 60 次冻融循环之后,质子交换膜(PEM)与催化剂层之间会出现间隙,导致更多的水进入 PEM,MEA 的欧姆电阻会减小。此外,根据数据分析,实验样品被分为三类(正常 MEA、轻度损坏 MEA 和严重损坏 MEA)。建立了一个结合了阈值网络和光梯度提升机(LGBM)的分类器模型,发现该组合模型的分类效果优于阈值密集型和 LGBM,达到了 96.89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of freeze–thaw cycles on membrane electrode assembly of proton exchange membrane fuel cells and its fault diagnosis method

In low-temperature environment, the residual water in the membrane electrode assembly (MEA) will freeze after the operation of proton exchange membrane fuel cells, which will cause damage to the MEA. In this paper, the effect of freeze–thaw cycles on MEA was studied. Six sets of MEA samples with 0, 20, 40, 60, 80, and 100 times freeze–thaw cycles were set up, and the damage on MEAs is analyzed by polarization curves, electrochemical impedance spectra, cyclic voltammetry curves, and scanning electron microscope. It was found that the freeze–thaw cycles caused degradation on MEA, and the ohmic resistance of MEA increases with the number of cycles increases before the 60 freeze–thaw cycles, and after 60 freeze–thaw cycles, a gap appeared between the proton exchange membrane (PEM) and the catalyst layer, which led to more water entering the PEM and the ohmic resistance of MEA decreased. Besides, according to the data analysis, the experimental samples are divided into three categories (normal MEA, lightly damaged MEA, and seriously damaged MEA). A classifier model combining inception network and light gradient boosting machine (LGBM) was established, and it was found that the combined model was better than inception–dense and LGBM for classification, reaching 96.89%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel Cells
Fuel Cells 工程技术-电化学
CiteScore
5.80
自引率
3.60%
发文量
31
审稿时长
3.7 months
期刊介绍: This journal is only available online from 2011 onwards. Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables. Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in -chemistry- materials science- physics- chemical engineering- electrical engineering- mechanical engineering- is included. Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies. Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology. Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信