构建用于碱性氧进化反应的坚固耐用的 Cu2Se-V2O5 纳米片状电催化剂

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Tauseef Munawar, Ambreen Bashir, Khalid Mujasam Batoo, Saman Fatima, Faisal Mukhtar, Sajjad Hussain, Sumaira Manzoor, Muhammad Naeem Ashiq, Shoukat Alim Khan, Muammer Koc, Faisal Iqbal
{"title":"构建用于碱性氧进化反应的坚固耐用的 Cu2Se-V2O5 纳米片状电催化剂","authors":"Tauseef Munawar,&nbsp;Ambreen Bashir,&nbsp;Khalid Mujasam Batoo,&nbsp;Saman Fatima,&nbsp;Faisal Mukhtar,&nbsp;Sajjad Hussain,&nbsp;Sumaira Manzoor,&nbsp;Muhammad Naeem Ashiq,&nbsp;Shoukat Alim Khan,&nbsp;Muammer Koc,&nbsp;Faisal Iqbal","doi":"10.1007/s11705-024-2420-6","DOIUrl":null,"url":null,"abstract":"<div><p>Reducing the production costs of clean energy carriers such as hydrogen through scalable water electrolysis is a potential solution for advancing the hydrogen economy. Among the various material candidates, our group demonstrated transition-metal-based materials with tunable electronic characteristics, various phases, and earth-abundance. Herein, electrochemical water oxidation using Cu<sub>2</sub>Se-V<sub>2</sub>O<sub>5</sub> as a non-precious metallic electrocatalyst via a hydrothermal approach is reported. The water-splitting performance of all the fabricated electrocatalysts was evaluated after direct growth on a stainless-steel substrate. The electrochemically tuned Cu<sub>2</sub>Se-V<sub>2</sub>O<sub>5</sub> catalyst exhibited a reduced overpotential of 128 mV and provided a reduced Tafel slope of 57 mV·dec<sup>−</sup><sup>1</sup> to meet the maximum current density of 250 mA·cm<sup>−</sup><sup>2</sup>. The optimized strategy for interfacial coupling of the fabricated Cu<sub>2</sub>Se-V<sub>2</sub>O<sub>5</sub> catalyst resulted in a porous structure with accessible active sites, which enabled adsorption of the intermediates and afforded an effective charge transfer rate for promoting the oxygen evolution reaction. Furthermore, the combined effect of the catalyst components provided long-term stability for over 110 h in an alkaline solution, which makes the catalyst promising for large-scale practical applications. The aforementioned advantages of the composite catalyst overcome the limitations of low conductivity, agglomeration, and poor stability of the pure catalysts (Cu<sub>2</sub>Se and V<sub>2</sub>O<sub>5</sub>).\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of robust and durable Cu2Se-V2O5 nanosheet electrocatalyst for alkaline oxygen evolution reaction\",\"authors\":\"Tauseef Munawar,&nbsp;Ambreen Bashir,&nbsp;Khalid Mujasam Batoo,&nbsp;Saman Fatima,&nbsp;Faisal Mukhtar,&nbsp;Sajjad Hussain,&nbsp;Sumaira Manzoor,&nbsp;Muhammad Naeem Ashiq,&nbsp;Shoukat Alim Khan,&nbsp;Muammer Koc,&nbsp;Faisal Iqbal\",\"doi\":\"10.1007/s11705-024-2420-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reducing the production costs of clean energy carriers such as hydrogen through scalable water electrolysis is a potential solution for advancing the hydrogen economy. Among the various material candidates, our group demonstrated transition-metal-based materials with tunable electronic characteristics, various phases, and earth-abundance. Herein, electrochemical water oxidation using Cu<sub>2</sub>Se-V<sub>2</sub>O<sub>5</sub> as a non-precious metallic electrocatalyst via a hydrothermal approach is reported. The water-splitting performance of all the fabricated electrocatalysts was evaluated after direct growth on a stainless-steel substrate. The electrochemically tuned Cu<sub>2</sub>Se-V<sub>2</sub>O<sub>5</sub> catalyst exhibited a reduced overpotential of 128 mV and provided a reduced Tafel slope of 57 mV·dec<sup>−</sup><sup>1</sup> to meet the maximum current density of 250 mA·cm<sup>−</sup><sup>2</sup>. The optimized strategy for interfacial coupling of the fabricated Cu<sub>2</sub>Se-V<sub>2</sub>O<sub>5</sub> catalyst resulted in a porous structure with accessible active sites, which enabled adsorption of the intermediates and afforded an effective charge transfer rate for promoting the oxygen evolution reaction. Furthermore, the combined effect of the catalyst components provided long-term stability for over 110 h in an alkaline solution, which makes the catalyst promising for large-scale practical applications. The aforementioned advantages of the composite catalyst overcome the limitations of low conductivity, agglomeration, and poor stability of the pure catalysts (Cu<sub>2</sub>Se and V<sub>2</sub>O<sub>5</sub>).\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2420-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2420-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过可扩展的水电解法降低氢等清洁能源载体的生产成本,是推动氢经济发展的潜在解决方案。在各种候选材料中,我们的研究小组展示了具有可调电子特性、各种相态和富土性的过渡金属基材料。本文报告了通过水热法使用 Cu2Se-V2O5 作为非贵金属电催化剂进行电化学水氧化的情况。在不锈钢基底上直接生长后,对所有制备的电催化剂的分水性能进行了评估。经电化学调谐的 Cu2Se-V2O5 催化剂过电位降低了 128 mV,塔菲尔斜率降低了 57 mV-dec-1,达到了 250 mA-cm-2 的最大电流密度。通过优化 Cu2Se-V2O5 催化剂的界面耦合策略,制备出了具有可访问活性位点的多孔结构,从而实现了对中间产物的吸附,并为促进氧进化反应提供了有效的电荷转移率。此外,催化剂组分的综合作用使其在碱性溶液中长期稳定超过 110 小时,这使得该催化剂有望得到大规模实际应用。复合催化剂的上述优点克服了纯催化剂(Cu2Se 和 V2O5)导电率低、团聚和稳定性差的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Construction of robust and durable Cu2Se-V2O5 nanosheet electrocatalyst for alkaline oxygen evolution reaction

Construction of robust and durable Cu2Se-V2O5 nanosheet electrocatalyst for alkaline oxygen evolution reaction

Reducing the production costs of clean energy carriers such as hydrogen through scalable water electrolysis is a potential solution for advancing the hydrogen economy. Among the various material candidates, our group demonstrated transition-metal-based materials with tunable electronic characteristics, various phases, and earth-abundance. Herein, electrochemical water oxidation using Cu2Se-V2O5 as a non-precious metallic electrocatalyst via a hydrothermal approach is reported. The water-splitting performance of all the fabricated electrocatalysts was evaluated after direct growth on a stainless-steel substrate. The electrochemically tuned Cu2Se-V2O5 catalyst exhibited a reduced overpotential of 128 mV and provided a reduced Tafel slope of 57 mV·dec1 to meet the maximum current density of 250 mA·cm2. The optimized strategy for interfacial coupling of the fabricated Cu2Se-V2O5 catalyst resulted in a porous structure with accessible active sites, which enabled adsorption of the intermediates and afforded an effective charge transfer rate for promoting the oxygen evolution reaction. Furthermore, the combined effect of the catalyst components provided long-term stability for over 110 h in an alkaline solution, which makes the catalyst promising for large-scale practical applications. The aforementioned advantages of the composite catalyst overcome the limitations of low conductivity, agglomeration, and poor stability of the pure catalysts (Cu2Se and V2O5).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信