木质纤维素高固酶水解过程中固体的自我缓冲作用

IF 3.1 3区 工程技术 Q3 ENERGY & FUELS
Xin Shi, Lan Wang, Hongzhang Chen
{"title":"木质纤维素高固酶水解过程中固体的自我缓冲作用","authors":"Xin Shi, Lan Wang, Hongzhang Chen","doi":"10.1007/s12155-024-10744-5","DOIUrl":null,"url":null,"abstract":"<p>The role of buffer in modulating the enzymatic hydrolysis environment of lignocellulose is crucial. However, studies on the impact of buffer on high-solid enzymatic hydrolysis remain limited. This study discovered that utilizing deionized water as a reaction medium, rather than the conventional buffer, did not influence the enzymatic hydrolysis of steam-exploded corn stover when the solid loading ranged between 15 and 25%. At 15% solid loading, the glucan conversion in the group treated with buffer was recorded at 89.8%, with a corresponding glucose concentration of 51.1 g/L. In contrast, the group without buffer exhibited a conversion of 88.9% and a glucose concentration of 50.5 g/L. The increase of acid groups in lignin was attributed to the formation of phenolic hydroxyls during steam explosion, which provided the substrate with the necessary conditions for buffering effects. Sequentially, during the high-solid enzymatic hydrolysis process, the substrate’s increased pore volume and specific surface area could potentially offset the buffering capacity, which led to the buffering effect becoming ineffective. Leveraging the self-buffering effect of the substrate, a fed-batch strategy was developed. This strategy replaced the water supplementation with buffers, augmenting the solid loading from 20 to 33% across six distinct feeding sessions over a span of 72 h. This not only reduced costs but also laid the foundation for the industrial viability of lignocellulosic high-concentration sugar production, thereby advancing the biofuels and bioproducts sector. These findings provide valuable insights for the exploration of solid reaction processes.</p>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Buffering Effect of Solids During High-Solid Enzymatic Hydrolysis of Lignocellulose\",\"authors\":\"Xin Shi, Lan Wang, Hongzhang Chen\",\"doi\":\"10.1007/s12155-024-10744-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The role of buffer in modulating the enzymatic hydrolysis environment of lignocellulose is crucial. However, studies on the impact of buffer on high-solid enzymatic hydrolysis remain limited. This study discovered that utilizing deionized water as a reaction medium, rather than the conventional buffer, did not influence the enzymatic hydrolysis of steam-exploded corn stover when the solid loading ranged between 15 and 25%. At 15% solid loading, the glucan conversion in the group treated with buffer was recorded at 89.8%, with a corresponding glucose concentration of 51.1 g/L. In contrast, the group without buffer exhibited a conversion of 88.9% and a glucose concentration of 50.5 g/L. The increase of acid groups in lignin was attributed to the formation of phenolic hydroxyls during steam explosion, which provided the substrate with the necessary conditions for buffering effects. Sequentially, during the high-solid enzymatic hydrolysis process, the substrate’s increased pore volume and specific surface area could potentially offset the buffering capacity, which led to the buffering effect becoming ineffective. Leveraging the self-buffering effect of the substrate, a fed-batch strategy was developed. This strategy replaced the water supplementation with buffers, augmenting the solid loading from 20 to 33% across six distinct feeding sessions over a span of 72 h. This not only reduced costs but also laid the foundation for the industrial viability of lignocellulosic high-concentration sugar production, thereby advancing the biofuels and bioproducts sector. These findings provide valuable insights for the exploration of solid reaction processes.</p>\",\"PeriodicalId\":487,\"journal\":{\"name\":\"BioEnergy Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEnergy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12155-024-10744-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12155-024-10744-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

缓冲液在调节木质纤维素的酶水解环境中的作用至关重要。然而,有关缓冲液对高固体酶水解影响的研究仍然有限。本研究发现,当固体负荷在 15% 到 25% 之间时,使用去离子水而不是传统的缓冲液作为反应介质不会影响蒸汽爆破玉米秸秆的酶水解。当固体负载量为 15%时,用缓冲液处理组的葡聚糖转化率为 89.8%,相应的葡萄糖浓度为 51.1 克/升。相比之下,未添加缓冲剂的组的转化率为 88.9%,葡萄糖浓度为 50.5 克/升。木质素中酸性基团的增加归因于蒸汽爆炸过程中酚羟基的形成,这为底物提供了缓冲作用的必要条件。随后,在高固体酶水解过程中,基质孔隙体积和比表面积的增加有可能抵消缓冲能力,导致缓冲作用失效。利用基质的自我缓冲作用,开发出了一种喂料批处理策略。这不仅降低了成本,还为木质纤维素高浓度糖生产的工业可行性奠定了基础,从而推动了生物燃料和生物产品行业的发展。这些发现为探索固体反应过程提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-Buffering Effect of Solids During High-Solid Enzymatic Hydrolysis of Lignocellulose

Self-Buffering Effect of Solids During High-Solid Enzymatic Hydrolysis of Lignocellulose

The role of buffer in modulating the enzymatic hydrolysis environment of lignocellulose is crucial. However, studies on the impact of buffer on high-solid enzymatic hydrolysis remain limited. This study discovered that utilizing deionized water as a reaction medium, rather than the conventional buffer, did not influence the enzymatic hydrolysis of steam-exploded corn stover when the solid loading ranged between 15 and 25%. At 15% solid loading, the glucan conversion in the group treated with buffer was recorded at 89.8%, with a corresponding glucose concentration of 51.1 g/L. In contrast, the group without buffer exhibited a conversion of 88.9% and a glucose concentration of 50.5 g/L. The increase of acid groups in lignin was attributed to the formation of phenolic hydroxyls during steam explosion, which provided the substrate with the necessary conditions for buffering effects. Sequentially, during the high-solid enzymatic hydrolysis process, the substrate’s increased pore volume and specific surface area could potentially offset the buffering capacity, which led to the buffering effect becoming ineffective. Leveraging the self-buffering effect of the substrate, a fed-batch strategy was developed. This strategy replaced the water supplementation with buffers, augmenting the solid loading from 20 to 33% across six distinct feeding sessions over a span of 72 h. This not only reduced costs but also laid the foundation for the industrial viability of lignocellulosic high-concentration sugar production, thereby advancing the biofuels and bioproducts sector. These findings provide valuable insights for the exploration of solid reaction processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioEnergy Research
BioEnergy Research ENERGY & FUELS-ENVIRONMENTAL SCIENCES
CiteScore
6.70
自引率
8.30%
发文量
174
审稿时长
3 months
期刊介绍: BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信