{"title":"微波灭菌:数值建模、食品包装和工程解决方案的相互联系","authors":"Sadhan Jyoti Dutta, Olivier Rouaud, Patrice Dole, Alexandre Thillier, Nicolas Belaubre, Sebastien Curet","doi":"10.1007/s12393-024-09370-w","DOIUrl":null,"url":null,"abstract":"<div><p>Microwave sterilization has seen many innovative solutions to solve its primary problem of non-uniform heating. Since its initial studies in the late 1940s, there were solutions that were put forward to address, such as using mechanical holders to contain the inner pressure of the package with food materials, use of fluids instead of mechanical holders, use of strong containers or polymeric packages, and use of monolayer and multilayer packaging. But even all these solutions could not entirely solve the problem of non-uniform heating. After the 2000s, the rise in numerous numerical simulations and modelling software, opened the doors to further explore this field of research with more details and to numerically model the multi-physics phenomenon. However, studies have still not been sufficient to commercially deploy microwave sterilization systems to their full potential. Challenges such as temperature measurement, pressure measurement and control, usage of the right packaging material, and homogeneous heat distribution are still to be addressed, all while developing an energy-efficient process using numerical modelling and simulation tools. Hence, this review aims to study the microwave sterilization systems since the early days of research and the packaging aspect during the microwave sterilization process. The review also explores the potential held by the numerical simulation and modelling tools in this field of microwave sterilization.</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"16 2","pages":"192 - 224"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microwave Sterilization: Interlinking Numerical Modelling, Food Packaging, and Engineering Solutions\",\"authors\":\"Sadhan Jyoti Dutta, Olivier Rouaud, Patrice Dole, Alexandre Thillier, Nicolas Belaubre, Sebastien Curet\",\"doi\":\"10.1007/s12393-024-09370-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microwave sterilization has seen many innovative solutions to solve its primary problem of non-uniform heating. Since its initial studies in the late 1940s, there were solutions that were put forward to address, such as using mechanical holders to contain the inner pressure of the package with food materials, use of fluids instead of mechanical holders, use of strong containers or polymeric packages, and use of monolayer and multilayer packaging. But even all these solutions could not entirely solve the problem of non-uniform heating. After the 2000s, the rise in numerous numerical simulations and modelling software, opened the doors to further explore this field of research with more details and to numerically model the multi-physics phenomenon. However, studies have still not been sufficient to commercially deploy microwave sterilization systems to their full potential. Challenges such as temperature measurement, pressure measurement and control, usage of the right packaging material, and homogeneous heat distribution are still to be addressed, all while developing an energy-efficient process using numerical modelling and simulation tools. Hence, this review aims to study the microwave sterilization systems since the early days of research and the packaging aspect during the microwave sterilization process. The review also explores the potential held by the numerical simulation and modelling tools in this field of microwave sterilization.</p></div>\",\"PeriodicalId\":565,\"journal\":{\"name\":\"Food Engineering Reviews\",\"volume\":\"16 2\",\"pages\":\"192 - 224\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Engineering Reviews\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12393-024-09370-w\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12393-024-09370-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Microwave Sterilization: Interlinking Numerical Modelling, Food Packaging, and Engineering Solutions
Microwave sterilization has seen many innovative solutions to solve its primary problem of non-uniform heating. Since its initial studies in the late 1940s, there were solutions that were put forward to address, such as using mechanical holders to contain the inner pressure of the package with food materials, use of fluids instead of mechanical holders, use of strong containers or polymeric packages, and use of monolayer and multilayer packaging. But even all these solutions could not entirely solve the problem of non-uniform heating. After the 2000s, the rise in numerous numerical simulations and modelling software, opened the doors to further explore this field of research with more details and to numerically model the multi-physics phenomenon. However, studies have still not been sufficient to commercially deploy microwave sterilization systems to their full potential. Challenges such as temperature measurement, pressure measurement and control, usage of the right packaging material, and homogeneous heat distribution are still to be addressed, all while developing an energy-efficient process using numerical modelling and simulation tools. Hence, this review aims to study the microwave sterilization systems since the early days of research and the packaging aspect during the microwave sterilization process. The review also explores the potential held by the numerical simulation and modelling tools in this field of microwave sterilization.
期刊介绍:
Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.