{"title":"TOCOL:通过标记级对比学习改进预训练语言模型的语境表征","authors":"Keheng Wang, Chuantao Yin, Rumei Li, Sirui Wang, Yunsen Xian, Wenge Rong, Zhang Xiong","doi":"10.1007/s10994-023-06512-9","DOIUrl":null,"url":null,"abstract":"<p>Self-attention, which allows transformers to capture deep bidirectional contexts, plays a vital role in BERT-like pre-trained language models. However, the maximum likelihood pre-training objective of BERT may produce an anisotropic word embedding space, which leads to biased attention scores for high-frequency tokens, as they are very close to each other in representation space and thus have higher similarities. This bias may ultimately affect the encoding of global contextual information. To address this issue, we propose TOCOL, a <b>TO</b>ken-Level <b>CO</b>ntrastive <b>L</b>earning framework for improving the contextual representation of pre-trained language models, which integrates a novel self-supervised objective to the attention mechanism to reshape the word representation space and encourages PLM to capture the global semantics of sentences. Results on the GLUE Benchmark show that TOCOL brings considerable improvement over the original BERT. Furthermore, we conduct a detailed analysis and demonstrate the robustness of our approach for low-resource scenarios.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TOCOL: improving contextual representation of pre-trained language models via token-level contrastive learning\",\"authors\":\"Keheng Wang, Chuantao Yin, Rumei Li, Sirui Wang, Yunsen Xian, Wenge Rong, Zhang Xiong\",\"doi\":\"10.1007/s10994-023-06512-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Self-attention, which allows transformers to capture deep bidirectional contexts, plays a vital role in BERT-like pre-trained language models. However, the maximum likelihood pre-training objective of BERT may produce an anisotropic word embedding space, which leads to biased attention scores for high-frequency tokens, as they are very close to each other in representation space and thus have higher similarities. This bias may ultimately affect the encoding of global contextual information. To address this issue, we propose TOCOL, a <b>TO</b>ken-Level <b>CO</b>ntrastive <b>L</b>earning framework for improving the contextual representation of pre-trained language models, which integrates a novel self-supervised objective to the attention mechanism to reshape the word representation space and encourages PLM to capture the global semantics of sentences. Results on the GLUE Benchmark show that TOCOL brings considerable improvement over the original BERT. Furthermore, we conduct a detailed analysis and demonstrate the robustness of our approach for low-resource scenarios.</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-023-06512-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-023-06512-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
TOCOL: improving contextual representation of pre-trained language models via token-level contrastive learning
Self-attention, which allows transformers to capture deep bidirectional contexts, plays a vital role in BERT-like pre-trained language models. However, the maximum likelihood pre-training objective of BERT may produce an anisotropic word embedding space, which leads to biased attention scores for high-frequency tokens, as they are very close to each other in representation space and thus have higher similarities. This bias may ultimately affect the encoding of global contextual information. To address this issue, we propose TOCOL, a TOken-Level COntrastive Learning framework for improving the contextual representation of pre-trained language models, which integrates a novel self-supervised objective to the attention mechanism to reshape the word representation space and encourages PLM to capture the global semantics of sentences. Results on the GLUE Benchmark show that TOCOL brings considerable improvement over the original BERT. Furthermore, we conduct a detailed analysis and demonstrate the robustness of our approach for low-resource scenarios.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.