Érica Z. Fornaroli, Mykola Khrypchenko, Ednei A. Santulo Jr
{"title":"发生代数的交换性保全器","authors":"Érica Z. Fornaroli, Mykola Khrypchenko, Ednei A. Santulo Jr","doi":"10.1007/s10468-024-10265-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>I</i>(<i>X</i>, <i>K</i>) be the incidence algebra of a finite connected poset <i>X</i> over a field <i>K</i> and <i>D</i>(<i>X</i>, <i>K</i>) its subalgebra consisting of diagonal elements. We describe the bijective linear maps <span>\\(\\varphi :I(X,K)\\rightarrow I(X,K)\\)</span> that strongly preserve the commutativity and satisfy <span>\\(\\varphi (D(X,K))=D(X,K)\\)</span>. We prove that such a map <span>\\(\\varphi \\)</span> is a composition of a commutativity preserver of shift type and a commutativity preserver associated to a quadruple <span>\\((\\theta ,\\sigma ,c,\\kappa )\\)</span> of simpler maps <span>\\(\\theta \\)</span>, <span>\\(\\sigma \\)</span>, <i>c</i> and a sequence <span>\\(\\kappa \\)</span> of elements of <i>K</i>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutativity Preservers of Incidence Algebras\",\"authors\":\"Érica Z. Fornaroli, Mykola Khrypchenko, Ednei A. Santulo Jr\",\"doi\":\"10.1007/s10468-024-10265-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>I</i>(<i>X</i>, <i>K</i>) be the incidence algebra of a finite connected poset <i>X</i> over a field <i>K</i> and <i>D</i>(<i>X</i>, <i>K</i>) its subalgebra consisting of diagonal elements. We describe the bijective linear maps <span>\\\\(\\\\varphi :I(X,K)\\\\rightarrow I(X,K)\\\\)</span> that strongly preserve the commutativity and satisfy <span>\\\\(\\\\varphi (D(X,K))=D(X,K)\\\\)</span>. We prove that such a map <span>\\\\(\\\\varphi \\\\)</span> is a composition of a commutativity preserver of shift type and a commutativity preserver associated to a quadruple <span>\\\\((\\\\theta ,\\\\sigma ,c,\\\\kappa )\\\\)</span> of simpler maps <span>\\\\(\\\\theta \\\\)</span>, <span>\\\\(\\\\sigma \\\\)</span>, <i>c</i> and a sequence <span>\\\\(\\\\kappa \\\\)</span> of elements of <i>K</i>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10265-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10265-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 I(X, K) 是一个域 K 上有限连接的集合 X 的入射代数,D(X, K) 是由对角元素组成的子代数。我们描述了双射线性映射(\varphi :I(X,K)\rightarrow I(X,K)\),这些映射强保留了交换性并满足\(\varphi (D(X,K))=D(X,K)\).我们证明这样一个映射((\varphi \))是移位类型的换向保护器和换向保护器的组合,换向保护器与简单映射((\theta \),\(\sigma \),c,\kappa ))的四元组(((\theta ,\sigma ,\c,\kappa))和K的元素序列((\kappa \))相关联。
Let I(X, K) be the incidence algebra of a finite connected poset X over a field K and D(X, K) its subalgebra consisting of diagonal elements. We describe the bijective linear maps \(\varphi :I(X,K)\rightarrow I(X,K)\) that strongly preserve the commutativity and satisfy \(\varphi (D(X,K))=D(X,K)\). We prove that such a map \(\varphi \) is a composition of a commutativity preserver of shift type and a commutativity preserver associated to a quadruple \((\theta ,\sigma ,c,\kappa )\) of simpler maps \(\theta \), \(\sigma \), c and a sequence \(\kappa \) of elements of K.