推进地下煤矿顶板冒落率预测:使用岩石工程系统方法进行综合分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hadi Fattahi, Hossein Ghaedi
{"title":"推进地下煤矿顶板冒落率预测:使用岩石工程系统方法进行综合分析","authors":"Hadi Fattahi, Hossein Ghaedi","doi":"10.1007/s42461-024-00962-y","DOIUrl":null,"url":null,"abstract":"<p>Despite the significant role of coal in the economic progress of nations, the occupational and health risks associated with its mining pose a major concern for industry stakeholders. The occurrence of roof collapses in coal mines remains a critical factor leading to substantial loss of life and financial damages for miners. Therefore, accurately predicting the roof fall rate (RFR) holds paramount importance. However, the uncertainty surrounding rock parameters in mines hinders the application of conventional methods to assess roof collapse rates in coal mines. To tackle the challenges associated with predicting roof fall rates in underground coal mines, this study proposes a novel solution by leveraging the Rock Engineering System (RES) method. The investigation is grounded in a dataset comprising 109 data points, encompassing crucial input parameters like depth of cover (DOF), primary roof support (PRSUP), intersection diagonal span (IS), mining height (MH), and coal mine roof rating (CMRR). In the model construction phase, 80% of the data (87 points) were utilized to build the RES model. A critical aspect of this study involves the evaluation of the RES model’s performance against alternative regression techniques, namely linear, power, exponential, polynomial, and logarithmic regression. This comparison was executed using the remaining 24 data points (20% of the dataset) for rigorous evaluation. Employing key statistical metrics such as mean square error (MSE), root mean square error (RMSE), and squared correlation coefficient (<i>R</i><sup>2</sup>), the study systematically demonstrated the superior accuracy of the RES-based method compared to other approaches. In conclusion, the outcomes strongly support the efficacy of the RES method in predicting roof fall rates, not only in the specific case studied but also indicating promise for its application in other underground coal projects. This underscores the potential of the RES method as a reliable and versatile tool for forecasting roof fall rates in the complex and critical context of underground coal mining.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Roof Fall Rate Prediction in Underground Coal Mines: A Comprehensive Analysis Using the Rock Engineering System Method\",\"authors\":\"Hadi Fattahi, Hossein Ghaedi\",\"doi\":\"10.1007/s42461-024-00962-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite the significant role of coal in the economic progress of nations, the occupational and health risks associated with its mining pose a major concern for industry stakeholders. The occurrence of roof collapses in coal mines remains a critical factor leading to substantial loss of life and financial damages for miners. Therefore, accurately predicting the roof fall rate (RFR) holds paramount importance. However, the uncertainty surrounding rock parameters in mines hinders the application of conventional methods to assess roof collapse rates in coal mines. To tackle the challenges associated with predicting roof fall rates in underground coal mines, this study proposes a novel solution by leveraging the Rock Engineering System (RES) method. The investigation is grounded in a dataset comprising 109 data points, encompassing crucial input parameters like depth of cover (DOF), primary roof support (PRSUP), intersection diagonal span (IS), mining height (MH), and coal mine roof rating (CMRR). In the model construction phase, 80% of the data (87 points) were utilized to build the RES model. A critical aspect of this study involves the evaluation of the RES model’s performance against alternative regression techniques, namely linear, power, exponential, polynomial, and logarithmic regression. This comparison was executed using the remaining 24 data points (20% of the dataset) for rigorous evaluation. Employing key statistical metrics such as mean square error (MSE), root mean square error (RMSE), and squared correlation coefficient (<i>R</i><sup>2</sup>), the study systematically demonstrated the superior accuracy of the RES-based method compared to other approaches. In conclusion, the outcomes strongly support the efficacy of the RES method in predicting roof fall rates, not only in the specific case studied but also indicating promise for its application in other underground coal projects. This underscores the potential of the RES method as a reliable and versatile tool for forecasting roof fall rates in the complex and critical context of underground coal mining.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-00962-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-00962-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管煤炭在国家经济进步中发挥着重要作用,但与煤炭开采相关的职业和健康风险却引起了行业利益相关者的极大关注。煤矿顶板坍塌事故仍然是导致矿工生命和经济损失的关键因素。因此,准确预测顶板垮落率(RFR)至关重要。然而,矿井岩石参数的不确定性阻碍了传统方法在煤矿顶板垮落率评估中的应用。为了应对与预测地下煤矿顶板垮落率相关的挑战,本研究利用岩石工程系统(RES)方法提出了一种新的解决方案。该研究以一个包含 109 个数据点的数据集为基础,其中包括覆盖深度 (DOF)、主要顶板支护 (PRSUP)、交叉对角跨度 (IS)、开采高度 (MH) 和煤矿顶板等级 (CMRR) 等关键输入参数。在模型构建阶段,80% 的数据(87 个点)被用于构建 RES 模型。本研究的一个重要方面是评估 RES 模型与其他回归技术(即线性回归、幂回归、指数回归、多项式回归和对数回归)的性能。这一比较使用剩余的 24 个数据点(占数据集的 20%)进行严格评估。研究采用了均方误差 (MSE)、均方根误差 (RMSE) 和平方相关系数 (R2) 等关键统计指标,系统地证明了与其他方法相比,基于 RES 的方法具有更高的准确性。总之,研究结果有力地证明了 RES 方法在预测顶板冒落率方面的有效性,这不仅体现在研究的具体案例中,而且还表明该方法有望应用于其他地下煤矿项目。这凸显了 RES 方法作为一种可靠的多功能工具,在复杂而关键的地下采煤环境中预测顶板冒落率的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancing Roof Fall Rate Prediction in Underground Coal Mines: A Comprehensive Analysis Using the Rock Engineering System Method

Advancing Roof Fall Rate Prediction in Underground Coal Mines: A Comprehensive Analysis Using the Rock Engineering System Method

Despite the significant role of coal in the economic progress of nations, the occupational and health risks associated with its mining pose a major concern for industry stakeholders. The occurrence of roof collapses in coal mines remains a critical factor leading to substantial loss of life and financial damages for miners. Therefore, accurately predicting the roof fall rate (RFR) holds paramount importance. However, the uncertainty surrounding rock parameters in mines hinders the application of conventional methods to assess roof collapse rates in coal mines. To tackle the challenges associated with predicting roof fall rates in underground coal mines, this study proposes a novel solution by leveraging the Rock Engineering System (RES) method. The investigation is grounded in a dataset comprising 109 data points, encompassing crucial input parameters like depth of cover (DOF), primary roof support (PRSUP), intersection diagonal span (IS), mining height (MH), and coal mine roof rating (CMRR). In the model construction phase, 80% of the data (87 points) were utilized to build the RES model. A critical aspect of this study involves the evaluation of the RES model’s performance against alternative regression techniques, namely linear, power, exponential, polynomial, and logarithmic regression. This comparison was executed using the remaining 24 data points (20% of the dataset) for rigorous evaluation. Employing key statistical metrics such as mean square error (MSE), root mean square error (RMSE), and squared correlation coefficient (R2), the study systematically demonstrated the superior accuracy of the RES-based method compared to other approaches. In conclusion, the outcomes strongly support the efficacy of the RES method in predicting roof fall rates, not only in the specific case studied but also indicating promise for its application in other underground coal projects. This underscores the potential of the RES method as a reliable and versatile tool for forecasting roof fall rates in the complex and critical context of underground coal mining.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信