用于智能电网计量基础设施的量子抗性区块链辅助无证书数据认证和密钥交换方案

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hema Shekhawat , Daya Sagar Gupta
{"title":"用于智能电网计量基础设施的量子抗性区块链辅助无证书数据认证和密钥交换方案","authors":"Hema Shekhawat ,&nbsp;Daya Sagar Gupta","doi":"10.1016/j.pmcj.2024.101919","DOIUrl":null,"url":null,"abstract":"<div><p>In the contemporary landscape of energy infrastructure, the “smart-grid metering infrastructure (SGMI)” emerges as a pivotal entity for efficiently monitoring and regulating electricity generation in response to client behavior. Within this context, SGMI addresses a spectrum of pertinent security and privacy concerns. This study systematically addresses the inherent research problems associated with SGMI and introduces a lattice-based blockchain-assisted certificateless data authentication and key exchange scheme. The primary aim of this scheme is to establish quantum resistance, conditional anonymity, dynamic participation, and the capacity for key updates and revocations, all of which are imperative facets for the robust implementation of mutual authentication within SGMI. Our scheme harnesses blockchain technology to mitigate the vulnerabilities associated with centralized administrative control, thus eliminating the risk of a single-point failure and distributed denial-of-service attacks. Furthermore, our proposed scheme is meticulously designed to accommodate the resource constraints of smart meters, characterized by lightweight operations. Rigorous formal security analysis is conducted within the framework of the quantum-accessible random oracle model, fortified by ’history-free reduction,’ substantiating its security credentials. Complementing this, simulation orchestration serves to underscore its superiority over existing methodologies, particularly in the realms of energy efficiency, data computation, communication, and the costs associated with private key storage.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum-resistance blockchain-assisted certificateless data authentication and key exchange scheme for the smart grid metering infrastructure\",\"authors\":\"Hema Shekhawat ,&nbsp;Daya Sagar Gupta\",\"doi\":\"10.1016/j.pmcj.2024.101919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the contemporary landscape of energy infrastructure, the “smart-grid metering infrastructure (SGMI)” emerges as a pivotal entity for efficiently monitoring and regulating electricity generation in response to client behavior. Within this context, SGMI addresses a spectrum of pertinent security and privacy concerns. This study systematically addresses the inherent research problems associated with SGMI and introduces a lattice-based blockchain-assisted certificateless data authentication and key exchange scheme. The primary aim of this scheme is to establish quantum resistance, conditional anonymity, dynamic participation, and the capacity for key updates and revocations, all of which are imperative facets for the robust implementation of mutual authentication within SGMI. Our scheme harnesses blockchain technology to mitigate the vulnerabilities associated with centralized administrative control, thus eliminating the risk of a single-point failure and distributed denial-of-service attacks. Furthermore, our proposed scheme is meticulously designed to accommodate the resource constraints of smart meters, characterized by lightweight operations. Rigorous formal security analysis is conducted within the framework of the quantum-accessible random oracle model, fortified by ’history-free reduction,’ substantiating its security credentials. Complementing this, simulation orchestration serves to underscore its superiority over existing methodologies, particularly in the realms of energy efficiency, data computation, communication, and the costs associated with private key storage.</p></div>\",\"PeriodicalId\":49005,\"journal\":{\"name\":\"Pervasive and Mobile Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pervasive and Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574119224000452\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119224000452","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在当代能源基础设施领域,"智能电网计量基础设施(SGMI)"已成为根据客户行为有效监控和调节发电量的关键实体。在此背景下,SGMI 解决了一系列相关的安全和隐私问题。本研究系统地解决了与 SGMI 相关的固有研究问题,并介绍了一种基于网格的区块链辅助无证书数据验证和密钥交换方案。该方案的主要目的是建立量子抗性、有条件的匿名性、动态参与以及密钥更新和撤销的能力,所有这些都是在 SGMI 中稳健实施相互认证的必要条件。我们的方案利用区块链技术减少了与集中式管理控制相关的漏洞,从而消除了单点故障和分布式拒绝服务攻击的风险。此外,我们提出的方案经过精心设计,以适应智能电表的资源限制,其特点是轻量级操作。我们在量子可访问随机甲骨文模型的框架内进行了严格的正式安全分析,并通过 "无历史还原 "进行了强化,从而证实了其安全性。作为补充,仿真协调强调了其优于现有方法的性能,特别是在能效、数据计算、通信以及与私钥存储相关的成本方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum-resistance blockchain-assisted certificateless data authentication and key exchange scheme for the smart grid metering infrastructure

In the contemporary landscape of energy infrastructure, the “smart-grid metering infrastructure (SGMI)” emerges as a pivotal entity for efficiently monitoring and regulating electricity generation in response to client behavior. Within this context, SGMI addresses a spectrum of pertinent security and privacy concerns. This study systematically addresses the inherent research problems associated with SGMI and introduces a lattice-based blockchain-assisted certificateless data authentication and key exchange scheme. The primary aim of this scheme is to establish quantum resistance, conditional anonymity, dynamic participation, and the capacity for key updates and revocations, all of which are imperative facets for the robust implementation of mutual authentication within SGMI. Our scheme harnesses blockchain technology to mitigate the vulnerabilities associated with centralized administrative control, thus eliminating the risk of a single-point failure and distributed denial-of-service attacks. Furthermore, our proposed scheme is meticulously designed to accommodate the resource constraints of smart meters, characterized by lightweight operations. Rigorous formal security analysis is conducted within the framework of the quantum-accessible random oracle model, fortified by ’history-free reduction,’ substantiating its security credentials. Complementing this, simulation orchestration serves to underscore its superiority over existing methodologies, particularly in the realms of energy efficiency, data computation, communication, and the costs associated with private key storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pervasive and Mobile Computing
Pervasive and Mobile Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
7.70
自引率
2.30%
发文量
80
审稿时长
68 days
期刊介绍: As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies. The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信