生物炭支持的零价铁增强了水稻土中砷的固定:土壤有机质的作用

IF 13.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Biochar Pub Date : 2024-03-19 DOI:10.1007/s42773-024-00318-1
Shengsen Wang, Wenjing Li, Chengyu Ding, Jian Zhang, Ni Zhang, Yuncong C. Li, Bin Gao, Bing Wang, Xiaozhi Wang
{"title":"生物炭支持的零价铁增强了水稻土中砷的固定:土壤有机质的作用","authors":"Shengsen Wang, Wenjing Li, Chengyu Ding, Jian Zhang, Ni Zhang, Yuncong C. Li, Bin Gao, Bing Wang, Xiaozhi Wang","doi":"10.1007/s42773-024-00318-1","DOIUrl":null,"url":null,"abstract":"<p>Arsenic (As) detoxification in polluted soils by iron-based materials can be mediated by the endogenous soil organic matter (SOM), nevertheless the mechanisms remain unclear. Herein, endogenous SOM in a paddy soil was substantially removed to understand its roles on As immobilization by biochar-supported zero-valent iron (ZVI/BC). The results demonstrated that ZVI/BC application significantly decreased As bioavailability by 64.2% compared with the control soil under the anaerobic condition. XPS and HR-TEM suggested As immobilization by ZVI/BC mainly invoked the formation of ternary complexes (i.e., As-Fe-SOM). However, SOM depletion compromised the efficacy of ZVI/BC for As immobilization by 289.8%. This is likely because SOM depletion increased the fulvic acid and OH<sup>−</sup> contents in soils. Besides, ZVI/BC increased the proportion of As(III) in available As fraction, but SOM depletion altered the mechanisms associated with As(V) reduction. That is, As(V) reduction resulted from the reductive capacity of ZVI in the pristine soil, but the As(V)-reducing bacteria contributed greater to As(V) reduction in the SOM-depleted soil. Additionally, SOM depletion boosted the abundances of Fe(III)- and As(V)-reducing bacteria such as <i>Bacillus</i> and <i>Ammoniphilus</i> in soils, which enhanced the dissimilatory arsenate reduction. Thus, this work highlighted the importance of SOM in the remediation of As-contaminated soils by ZVI/BC.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"111 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochar-supported zero-valent iron enhanced arsenic immobilization in a paddy soil: the role of soil organic matter\",\"authors\":\"Shengsen Wang, Wenjing Li, Chengyu Ding, Jian Zhang, Ni Zhang, Yuncong C. Li, Bin Gao, Bing Wang, Xiaozhi Wang\",\"doi\":\"10.1007/s42773-024-00318-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Arsenic (As) detoxification in polluted soils by iron-based materials can be mediated by the endogenous soil organic matter (SOM), nevertheless the mechanisms remain unclear. Herein, endogenous SOM in a paddy soil was substantially removed to understand its roles on As immobilization by biochar-supported zero-valent iron (ZVI/BC). The results demonstrated that ZVI/BC application significantly decreased As bioavailability by 64.2% compared with the control soil under the anaerobic condition. XPS and HR-TEM suggested As immobilization by ZVI/BC mainly invoked the formation of ternary complexes (i.e., As-Fe-SOM). However, SOM depletion compromised the efficacy of ZVI/BC for As immobilization by 289.8%. This is likely because SOM depletion increased the fulvic acid and OH<sup>−</sup> contents in soils. Besides, ZVI/BC increased the proportion of As(III) in available As fraction, but SOM depletion altered the mechanisms associated with As(V) reduction. That is, As(V) reduction resulted from the reductive capacity of ZVI in the pristine soil, but the As(V)-reducing bacteria contributed greater to As(V) reduction in the SOM-depleted soil. Additionally, SOM depletion boosted the abundances of Fe(III)- and As(V)-reducing bacteria such as <i>Bacillus</i> and <i>Ammoniphilus</i> in soils, which enhanced the dissimilatory arsenate reduction. Thus, this work highlighted the importance of SOM in the remediation of As-contaminated soils by ZVI/BC.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":8789,\"journal\":{\"name\":\"Biochar\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochar\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s42773-024-00318-1\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00318-1","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

铁基材料对污染土壤中砷(As)的解毒作用可由内源土壤有机质(SOM)介导,但其机制仍不清楚。在本文中,为了了解生物炭支持的零价铁(ZVI/BC)对砷固定化的作用,对水稻土壤中的内源 SOM 进行了大量清除。结果表明,与厌氧条件下的对照土壤相比,施用 ZVI/BC 能显著降低砷的生物利用率 64.2%。XPS 和 HR-TEM 表明,ZVI/BC 对砷的固定作用主要是形成三元复合物(即 As-Fe-SOM)。然而,SOM 的耗竭使 ZVI/BC 固定砷的效果降低了 289.8%。这可能是因为 SOM 的消耗增加了土壤中的富勒酸和 OH- 含量。此外,ZVI/BC 增加了可用砷组分中 As(III) 的比例,但 SOM 的消耗改变了与 As(V) 还原相关的机制。也就是说,原始土壤中 ZVI 的还原能力导致了 As(V)的减少,但在 SOM 贫瘠的土壤中,As(V)还原菌对 As(V)的减少做出了更大的贡献。此外,SOM 贫乏提高了土壤中铁(III)和砷(V)还原菌(如芽孢杆菌和氨腓菌)的丰度,从而增强了砷酸盐的异氨还原。因此,这项工作强调了 SOM 在 ZVI/BC 修复砷污染土壤中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biochar-supported zero-valent iron enhanced arsenic immobilization in a paddy soil: the role of soil organic matter

Biochar-supported zero-valent iron enhanced arsenic immobilization in a paddy soil: the role of soil organic matter

Arsenic (As) detoxification in polluted soils by iron-based materials can be mediated by the endogenous soil organic matter (SOM), nevertheless the mechanisms remain unclear. Herein, endogenous SOM in a paddy soil was substantially removed to understand its roles on As immobilization by biochar-supported zero-valent iron (ZVI/BC). The results demonstrated that ZVI/BC application significantly decreased As bioavailability by 64.2% compared with the control soil under the anaerobic condition. XPS and HR-TEM suggested As immobilization by ZVI/BC mainly invoked the formation of ternary complexes (i.e., As-Fe-SOM). However, SOM depletion compromised the efficacy of ZVI/BC for As immobilization by 289.8%. This is likely because SOM depletion increased the fulvic acid and OH contents in soils. Besides, ZVI/BC increased the proportion of As(III) in available As fraction, but SOM depletion altered the mechanisms associated with As(V) reduction. That is, As(V) reduction resulted from the reductive capacity of ZVI in the pristine soil, but the As(V)-reducing bacteria contributed greater to As(V) reduction in the SOM-depleted soil. Additionally, SOM depletion boosted the abundances of Fe(III)- and As(V)-reducing bacteria such as Bacillus and Ammoniphilus in soils, which enhanced the dissimilatory arsenate reduction. Thus, this work highlighted the importance of SOM in the remediation of As-contaminated soils by ZVI/BC.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochar
Biochar Multiple-
CiteScore
18.60
自引率
10.20%
发文量
61
期刊介绍: Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信