多面体的翻转距离和三角形

Pub Date : 2024-03-18 DOI:10.1002/jgt.23096
Zili Wang
{"title":"多面体的翻转距离和三角形","authors":"Zili Wang","doi":"10.1002/jgt.23096","DOIUrl":null,"url":null,"abstract":"<p>It is known that the flip distance between two triangulations of a convex polygon is related to the smallest number of tetrahedra in the triangulation of some polyhedron. The latter was used to compute the diameter of the flip graph of convex polygons with a large number of vertices. However, it is yet unknown whether the flip distance and this smallest number of tetrahedra are always the same or even close. In this work, we find examples to show that the ratio between these two numbers can be arbitrarily close to <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mn>3</mn>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n <annotation> $\\frac{3}{2}$</annotation>\n </semantics></math>. We also propose two conjectures in the end, one about this ratio, and the other may have some implications on when two triangulations can achieve maximal distance.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flip distance and triangulations of a polyhedron\",\"authors\":\"Zili Wang\",\"doi\":\"10.1002/jgt.23096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is known that the flip distance between two triangulations of a convex polygon is related to the smallest number of tetrahedra in the triangulation of some polyhedron. The latter was used to compute the diameter of the flip graph of convex polygons with a large number of vertices. However, it is yet unknown whether the flip distance and this smallest number of tetrahedra are always the same or even close. In this work, we find examples to show that the ratio between these two numbers can be arbitrarily close to <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mn>3</mn>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n <annotation> $\\\\frac{3}{2}$</annotation>\\n </semantics></math>. We also propose two conjectures in the end, one about this ratio, and the other may have some implications on when two triangulations can achieve maximal distance.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,凸多边形的两个三角形之间的翻转距离与某个多面体的三角形中的最小四面体数有关。后者被用来计算具有大量顶点的凸多边形的翻转图形直径。然而,翻转距离和这个最小的四面体数目是否总是相同甚至接近,目前还不得而知。在这项工作中,我们找到了一些例子来证明这两个数字之间的比值可以任意地接近于 。 最后,我们还提出了两个猜想,一个是关于这个比值的,另一个可能对两个三角形何时能达到最大距离有一些影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Flip distance and triangulations of a polyhedron

It is known that the flip distance between two triangulations of a convex polygon is related to the smallest number of tetrahedra in the triangulation of some polyhedron. The latter was used to compute the diameter of the flip graph of convex polygons with a large number of vertices. However, it is yet unknown whether the flip distance and this smallest number of tetrahedra are always the same or even close. In this work, we find examples to show that the ratio between these two numbers can be arbitrarily close to 3 2 $\frac{3}{2}$ . We also propose two conjectures in the end, one about this ratio, and the other may have some implications on when two triangulations can achieve maximal distance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信