{"title":"拉曼微光谱技术用于无标记诊断各器官中的淀粉样轻链淀粉样变性病","authors":"Shin-ichiro Yanagiya, Takeshi Honda, Hiroki Takanari, Kimiko Sogabe, Shingen Nakamura, Yoshimi Bando, Koichi Tsuneyama, Masahiro Abe, Hirokazu Miki","doi":"10.1002/jrs.6665","DOIUrl":null,"url":null,"abstract":"<p>Systemic amyloidosis is a group of diseases in which misfolded proteins aggregate as fibrous amyloid proteins with a β-sheet structure and deposit in organs, resulting in organ failure. Most types of amyloidosis have a poor prognosis, and prompt diagnosis is essential for treatment. Systemic immunoglobulin light-chain (AL) amyloidosis is a type of amyloidosis that occurs when abnormal immunoglobulin light-chain proteins are deposited in various organs and tissues. The deposition of amyloid proteins in tissues has traditionally been confirmed using Congo red staining and polarised light microscopy, which show apple-green birefringence. In this study, we aimed to verify whether amyloid deposition in the heart, kidney, rectum, duodenum and skin can be detected using Raman microspectroscopy. Serial sections were prepared from formalin-fixed paraffin-embedded tissue biopsy samples obtained from patients with systemic amyloidosis. One of the serial sections was stained with Congo red to confirm the deposition of amyloid proteins using polarised light microscopy, whereas the other was left unstained for Raman microspectroscopy. A characteristic peak at Raman shift of 1665–1680 cm<sup>−1</sup>, which may represent a β-sheet structure of amyloid proteins, was recorded in the area where the amyloid deposition had been confirmed by Congo red staining. Based on the peak at 1640–1680 cm<sup>−1</sup>, a colour map was obtained to detect amyloid protein-positive regions. Thus, amyloid protein detection using Raman microspectroscopy may be useful for rapid diagnosis of amyloidosis.</p>","PeriodicalId":16926,"journal":{"name":"Journal of Raman Spectroscopy","volume":"55 7","pages":"753-760"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Raman microspectroscopy for label-free diagnosis of amyloid light-chain amyloidosis in various organs\",\"authors\":\"Shin-ichiro Yanagiya, Takeshi Honda, Hiroki Takanari, Kimiko Sogabe, Shingen Nakamura, Yoshimi Bando, Koichi Tsuneyama, Masahiro Abe, Hirokazu Miki\",\"doi\":\"10.1002/jrs.6665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Systemic amyloidosis is a group of diseases in which misfolded proteins aggregate as fibrous amyloid proteins with a β-sheet structure and deposit in organs, resulting in organ failure. Most types of amyloidosis have a poor prognosis, and prompt diagnosis is essential for treatment. Systemic immunoglobulin light-chain (AL) amyloidosis is a type of amyloidosis that occurs when abnormal immunoglobulin light-chain proteins are deposited in various organs and tissues. The deposition of amyloid proteins in tissues has traditionally been confirmed using Congo red staining and polarised light microscopy, which show apple-green birefringence. In this study, we aimed to verify whether amyloid deposition in the heart, kidney, rectum, duodenum and skin can be detected using Raman microspectroscopy. Serial sections were prepared from formalin-fixed paraffin-embedded tissue biopsy samples obtained from patients with systemic amyloidosis. One of the serial sections was stained with Congo red to confirm the deposition of amyloid proteins using polarised light microscopy, whereas the other was left unstained for Raman microspectroscopy. A characteristic peak at Raman shift of 1665–1680 cm<sup>−1</sup>, which may represent a β-sheet structure of amyloid proteins, was recorded in the area where the amyloid deposition had been confirmed by Congo red staining. Based on the peak at 1640–1680 cm<sup>−1</sup>, a colour map was obtained to detect amyloid protein-positive regions. Thus, amyloid protein detection using Raman microspectroscopy may be useful for rapid diagnosis of amyloidosis.</p>\",\"PeriodicalId\":16926,\"journal\":{\"name\":\"Journal of Raman Spectroscopy\",\"volume\":\"55 7\",\"pages\":\"753-760\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Raman Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6665\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Raman Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6665","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Raman microspectroscopy for label-free diagnosis of amyloid light-chain amyloidosis in various organs
Systemic amyloidosis is a group of diseases in which misfolded proteins aggregate as fibrous amyloid proteins with a β-sheet structure and deposit in organs, resulting in organ failure. Most types of amyloidosis have a poor prognosis, and prompt diagnosis is essential for treatment. Systemic immunoglobulin light-chain (AL) amyloidosis is a type of amyloidosis that occurs when abnormal immunoglobulin light-chain proteins are deposited in various organs and tissues. The deposition of amyloid proteins in tissues has traditionally been confirmed using Congo red staining and polarised light microscopy, which show apple-green birefringence. In this study, we aimed to verify whether amyloid deposition in the heart, kidney, rectum, duodenum and skin can be detected using Raman microspectroscopy. Serial sections were prepared from formalin-fixed paraffin-embedded tissue biopsy samples obtained from patients with systemic amyloidosis. One of the serial sections was stained with Congo red to confirm the deposition of amyloid proteins using polarised light microscopy, whereas the other was left unstained for Raman microspectroscopy. A characteristic peak at Raman shift of 1665–1680 cm−1, which may represent a β-sheet structure of amyloid proteins, was recorded in the area where the amyloid deposition had been confirmed by Congo red staining. Based on the peak at 1640–1680 cm−1, a colour map was obtained to detect amyloid protein-positive regions. Thus, amyloid protein detection using Raman microspectroscopy may be useful for rapid diagnosis of amyloidosis.
期刊介绍:
The Journal of Raman Spectroscopy is an international journal dedicated to the publication of original research at the cutting edge of all areas of science and technology related to Raman spectroscopy. The journal seeks to be the central forum for documenting the evolution of the broadly-defined field of Raman spectroscopy that includes an increasing number of rapidly developing techniques and an ever-widening array of interdisciplinary applications.
Such topics include time-resolved, coherent and non-linear Raman spectroscopies, nanostructure-based surface-enhanced and tip-enhanced Raman spectroscopies of molecules, resonance Raman to investigate the structure-function relationships and dynamics of biological molecules, linear and nonlinear Raman imaging and microscopy, biomedical applications of Raman, theoretical formalism and advances in quantum computational methodology of all forms of Raman scattering, Raman spectroscopy in archaeology and art, advances in remote Raman sensing and industrial applications, and Raman optical activity of all classes of chiral molecules.