{"title":"最小代数连通性和最大直径:阿尔多斯-菲尔猜想和圭杜利-莫哈尔猜想","authors":"Maryam Abdi , Ebrahim Ghorbani","doi":"10.1016/j.jctb.2024.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>Aldous and Fill (2002) conjectured that the maximum relaxation time for the random walk on a connected regular graph with <em>n</em> vertices is <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mfrac><mrow><mn>3</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span>. A conjecture by Guiduli and Mohar (1996) predicts the structure of graphs whose algebraic connectivity <em>μ</em> is the smallest among all connected graphs whose minimum degree <em>δ</em> is a given <em>d</em>. We prove that this conjecture implies the Aldous–Fill conjecture for odd <em>d</em>. We pose another conjecture on the structure of <em>d</em>-regular graphs with minimum <em>μ</em>, and show that this also implies the Aldous–Fill conjecture for even <em>d</em>. In the literature, it has been noted empirically that graphs with small <em>μ</em> tend to have a large diameter. In this regard, Guiduli (1996) asked if the cubic graphs with maximum diameter have algebraic connectivity smaller than all others. Motivated by these, we investigate the interplay between the graphs with maximum diameter and those with minimum algebraic connectivity. We show that the answer to Guiduli problem in its general form, that is for <em>d</em>-regular graphs for every <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> is negative. We aim to develop an asymptotic formulation of the problem. It is proven that <em>d</em>-regular graphs for <span><math><mi>d</mi><mo>≥</mo><mn>5</mn></math></span> as well as graphs with <span><math><mi>δ</mi><mo>=</mo><mi>d</mi></math></span> for <span><math><mi>d</mi><mo>≥</mo><mn>4</mn></math></span> with asymptotically maximum diameter, do not necessarily exhibit the asymptotically smallest <em>μ</em>. We conjecture that <em>d</em>-regular graphs (or graphs with <span><math><mi>δ</mi><mo>=</mo><mi>d</mi></math></span>) that have asymptotically smallest <em>μ</em>, should have asymptotically maximum diameter. The above results rely heavily on our understanding of the structure as well as optimal estimation of the algebraic connectivity of nearly maximum-diameter graphs, from which the Aldous–Fill conjecture for this family of graphs also follows.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"167 ","pages":"Pages 164-188"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum algebraic connectivity and maximum diameter: Aldous–Fill and Guiduli–Mohar conjectures\",\"authors\":\"Maryam Abdi , Ebrahim Ghorbani\",\"doi\":\"10.1016/j.jctb.2024.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aldous and Fill (2002) conjectured that the maximum relaxation time for the random walk on a connected regular graph with <em>n</em> vertices is <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mfrac><mrow><mn>3</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span>. A conjecture by Guiduli and Mohar (1996) predicts the structure of graphs whose algebraic connectivity <em>μ</em> is the smallest among all connected graphs whose minimum degree <em>δ</em> is a given <em>d</em>. We prove that this conjecture implies the Aldous–Fill conjecture for odd <em>d</em>. We pose another conjecture on the structure of <em>d</em>-regular graphs with minimum <em>μ</em>, and show that this also implies the Aldous–Fill conjecture for even <em>d</em>. In the literature, it has been noted empirically that graphs with small <em>μ</em> tend to have a large diameter. In this regard, Guiduli (1996) asked if the cubic graphs with maximum diameter have algebraic connectivity smaller than all others. Motivated by these, we investigate the interplay between the graphs with maximum diameter and those with minimum algebraic connectivity. We show that the answer to Guiduli problem in its general form, that is for <em>d</em>-regular graphs for every <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> is negative. We aim to develop an asymptotic formulation of the problem. It is proven that <em>d</em>-regular graphs for <span><math><mi>d</mi><mo>≥</mo><mn>5</mn></math></span> as well as graphs with <span><math><mi>δ</mi><mo>=</mo><mi>d</mi></math></span> for <span><math><mi>d</mi><mo>≥</mo><mn>4</mn></math></span> with asymptotically maximum diameter, do not necessarily exhibit the asymptotically smallest <em>μ</em>. We conjecture that <em>d</em>-regular graphs (or graphs with <span><math><mi>δ</mi><mo>=</mo><mi>d</mi></math></span>) that have asymptotically smallest <em>μ</em>, should have asymptotically maximum diameter. The above results rely heavily on our understanding of the structure as well as optimal estimation of the algebraic connectivity of nearly maximum-diameter graphs, from which the Aldous–Fill conjecture for this family of graphs also follows.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"167 \",\"pages\":\"Pages 164-188\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000108\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000108","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Aldous 和 Fill(2002 年)猜想,在有 n 个顶点的连通规则图上随机行走的最大松弛时间为 (1+o(1))3n22π2 。Guiduli 和 Mohar(1996 年)提出的一个猜想预测了代数连通性 μ 在最小度 δ 为给定 d 的所有连通图中最小的图的结构。我们提出了另一个关于最小 μ 的 d 规则图结构的猜想,并证明这也意味着偶数 d 的 Aldous-Fill 猜想。在这方面,Guiduli(1996 年)提出了一个问题:具有最大直径的立方图的代数连通性是否小于所有其他图?受此启发,我们研究了具有最大直径的图形与具有最小代数连通性的图形之间的相互作用。我们证明,对于一般形式的 Guiduli 问题,即对于逢 d≥3 的 d-regular 图形,答案是否定的。我们的目标是开发该问题的渐近公式。事实证明,对于 d≥5 的 d-regular 图形以及对于 d≥4 的 δ=d 且直径渐近最大的图形,并不一定表现出渐近最小的 μ。我们猜想,具有渐近最小 μ 的 d 不规则图(或 δ=d 的图)应该具有渐近最大直径。上述结果在很大程度上依赖于我们对近最大直径图的结构的理解以及对其代数连通性的最佳估计,由此也可以得出这一类图的阿尔多斯-填充猜想。
Minimum algebraic connectivity and maximum diameter: Aldous–Fill and Guiduli–Mohar conjectures
Aldous and Fill (2002) conjectured that the maximum relaxation time for the random walk on a connected regular graph with n vertices is . A conjecture by Guiduli and Mohar (1996) predicts the structure of graphs whose algebraic connectivity μ is the smallest among all connected graphs whose minimum degree δ is a given d. We prove that this conjecture implies the Aldous–Fill conjecture for odd d. We pose another conjecture on the structure of d-regular graphs with minimum μ, and show that this also implies the Aldous–Fill conjecture for even d. In the literature, it has been noted empirically that graphs with small μ tend to have a large diameter. In this regard, Guiduli (1996) asked if the cubic graphs with maximum diameter have algebraic connectivity smaller than all others. Motivated by these, we investigate the interplay between the graphs with maximum diameter and those with minimum algebraic connectivity. We show that the answer to Guiduli problem in its general form, that is for d-regular graphs for every is negative. We aim to develop an asymptotic formulation of the problem. It is proven that d-regular graphs for as well as graphs with for with asymptotically maximum diameter, do not necessarily exhibit the asymptotically smallest μ. We conjecture that d-regular graphs (or graphs with ) that have asymptotically smallest μ, should have asymptotically maximum diameter. The above results rely heavily on our understanding of the structure as well as optimal estimation of the algebraic connectivity of nearly maximum-diameter graphs, from which the Aldous–Fill conjecture for this family of graphs also follows.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.