无严格-EKR属性的极值 Peisert 型图形

IF 0.9 2区 数学 Q2 MATHEMATICS
Sergey Goryainov , Chi Hoi Yip
{"title":"无严格-EKR属性的极值 Peisert 型图形","authors":"Sergey Goryainov ,&nbsp;Chi Hoi Yip","doi":"10.1016/j.jcta.2024.105887","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that Paley graphs of square order have the strict-EKR property, that is, all maximum cliques are canonical cliques. Peisert-type graphs are natural generalizations of Paley graphs and some of them also have the strict-EKR property. Given a prime power <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span>, we study Peisert-type graphs of order <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> without the strict-EKR property and with the minimum number of edges and we call such graphs extremal. We determine number of edges in extremal graphs for each value of <em>q</em>. If <em>q</em> is a square or a cube, we show the uniqueness of the extremal graph and classify all maximum cliques explicitly. Moreover, when <em>q</em> is a square, we prove that there is no Hilton-Milner type result for the extremal graph, and show the tightness of the weight-distribution bound for both non-principal eigenvalues of this graph.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105887"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Peisert-type graphs without the strict-EKR property\",\"authors\":\"Sergey Goryainov ,&nbsp;Chi Hoi Yip\",\"doi\":\"10.1016/j.jcta.2024.105887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is known that Paley graphs of square order have the strict-EKR property, that is, all maximum cliques are canonical cliques. Peisert-type graphs are natural generalizations of Paley graphs and some of them also have the strict-EKR property. Given a prime power <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span>, we study Peisert-type graphs of order <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> without the strict-EKR property and with the minimum number of edges and we call such graphs extremal. We determine number of edges in extremal graphs for each value of <em>q</em>. If <em>q</em> is a square or a cube, we show the uniqueness of the extremal graph and classify all maximum cliques explicitly. Moreover, when <em>q</em> is a square, we prove that there is no Hilton-Milner type result for the extremal graph, and show the tightness of the weight-distribution bound for both non-principal eigenvalues of this graph.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"206 \",\"pages\":\"Article 105887\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000268\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000268","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,平方阶 Paley 图具有严格-EKR 特性,即所有最大簇都是典型簇。Peisert 型图是 Paley 图的自然概括,其中一些也具有严格-EKR 属性。给定一个质数幂 q≥3,我们研究阶数为 q2、不具有严格-EKR 属性且具有最少边数的 Peisert-type 图,并称这类图为极值图。如果 q 是正方形或立方体,我们将证明极值图的唯一性,并明确划分所有最大簇。此外,当 q 为正方形时,我们证明了极值图不存在希尔顿-米尔纳(Hilton-Milner)类型的结果,并证明了该图两个非主特征值的权重分布约束的严密性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal Peisert-type graphs without the strict-EKR property

It is known that Paley graphs of square order have the strict-EKR property, that is, all maximum cliques are canonical cliques. Peisert-type graphs are natural generalizations of Paley graphs and some of them also have the strict-EKR property. Given a prime power q3, we study Peisert-type graphs of order q2 without the strict-EKR property and with the minimum number of edges and we call such graphs extremal. We determine number of edges in extremal graphs for each value of q. If q is a square or a cube, we show the uniqueness of the extremal graph and classify all maximum cliques explicitly. Moreover, when q is a square, we prove that there is no Hilton-Milner type result for the extremal graph, and show the tightness of the weight-distribution bound for both non-principal eigenvalues of this graph.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信