了解过渡金属单原子电子结构在氧化硫自由基介导的氧化降解中的作用

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Guanshu Zhao , Jing Ding , Jiayi Ren , Qingliang Zhao , Chengliang Mao , Kun Wang , Jessica Ye , Xueqi Chen , Xianjie Wang , Mingce Long
{"title":"了解过渡金属单原子电子结构在氧化硫自由基介导的氧化降解中的作用","authors":"Guanshu Zhao ,&nbsp;Jing Ding ,&nbsp;Jiayi Ren ,&nbsp;Qingliang Zhao ,&nbsp;Chengliang Mao ,&nbsp;Kun Wang ,&nbsp;Jessica Ye ,&nbsp;Xueqi Chen ,&nbsp;Xianjie Wang ,&nbsp;Mingce Long","doi":"10.1016/j.ese.2024.100405","DOIUrl":null,"url":null,"abstract":"<div><p>The ubiquity of refractory organic matter in aquatic environments necessitates innovative removal strategies. Sulfate radical-based advanced oxidation has emerged as an attractive solution, offering high selectivity, enduring efficacy, and anti-interference ability. Among many technologies, sulfite activation, leveraging its cost-effectiveness and lower toxicity compared to conventional persulfates, stands out. Yet, the activation process often relies on transition metals, suffering from low atom utilization. Here we introduce a series of single-atom catalysts (SACs) employing transition metals on g-C<sub>3</sub>N<sub>4</sub> substrates, effectively activating sulfite for acetaminophen degradation. We highlight the superior performance of Fe/CN, which demonstrates a degradation rate constant significantly surpassing those of Ni/CN and Cu/CN. Our investigation into the electronic and spin polarization characteristics of these catalysts reveals their critical role in catalytic efficiency, with oxysulfur radical-mediated reactions predominating. Notably, under visible light, the catalytic activity is enhanced, attributed to an increased generation of oxysulfur radicals and a strengthened electron donation-back donation dynamic. The proximity of Fe/CN's d-band center to the Fermi level, alongside its high spin polarization, is shown to improve sulfite adsorption and reduce the HOMO-LUMO gap, thereby accelerating photo-assisted sulfite activation. This work advances the understanding of SACs in environmental applications and lays the groundwork for future water treatment technologies.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266649842400019X/pdfft?md5=0d174a355bead18f5014b2adb0aa6a77&pid=1-s2.0-S266649842400019X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Understanding the role of transition metal single-atom electronic structure in oxysulfur radical-mediated oxidative degradation\",\"authors\":\"Guanshu Zhao ,&nbsp;Jing Ding ,&nbsp;Jiayi Ren ,&nbsp;Qingliang Zhao ,&nbsp;Chengliang Mao ,&nbsp;Kun Wang ,&nbsp;Jessica Ye ,&nbsp;Xueqi Chen ,&nbsp;Xianjie Wang ,&nbsp;Mingce Long\",\"doi\":\"10.1016/j.ese.2024.100405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ubiquity of refractory organic matter in aquatic environments necessitates innovative removal strategies. Sulfate radical-based advanced oxidation has emerged as an attractive solution, offering high selectivity, enduring efficacy, and anti-interference ability. Among many technologies, sulfite activation, leveraging its cost-effectiveness and lower toxicity compared to conventional persulfates, stands out. Yet, the activation process often relies on transition metals, suffering from low atom utilization. Here we introduce a series of single-atom catalysts (SACs) employing transition metals on g-C<sub>3</sub>N<sub>4</sub> substrates, effectively activating sulfite for acetaminophen degradation. We highlight the superior performance of Fe/CN, which demonstrates a degradation rate constant significantly surpassing those of Ni/CN and Cu/CN. Our investigation into the electronic and spin polarization characteristics of these catalysts reveals their critical role in catalytic efficiency, with oxysulfur radical-mediated reactions predominating. Notably, under visible light, the catalytic activity is enhanced, attributed to an increased generation of oxysulfur radicals and a strengthened electron donation-back donation dynamic. The proximity of Fe/CN's d-band center to the Fermi level, alongside its high spin polarization, is shown to improve sulfite adsorption and reduce the HOMO-LUMO gap, thereby accelerating photo-assisted sulfite activation. This work advances the understanding of SACs in environmental applications and lays the groundwork for future water treatment technologies.</p></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266649842400019X/pdfft?md5=0d174a355bead18f5014b2adb0aa6a77&pid=1-s2.0-S266649842400019X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266649842400019X\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266649842400019X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

水生环境中难于去除的有机物无处不在,因此需要创新的去除策略。基于硫酸根的高级氧化技术具有选择性高、功效持久、抗干扰能力强等特点,已成为一种极具吸引力的解决方案。在众多技术中,亚硫酸盐活化技术因其成本效益高、毒性低于传统过硫酸盐而脱颖而出。然而,活化过程通常依赖于过渡金属,原子利用率较低。在此,我们介绍了一系列在 g-C3N4 底物上使用过渡金属的单原子催化剂 (SAC),它们能有效地活化亚硫酸盐,用于对乙酰氨基酚的降解。我们强调了 Fe/CN 的卓越性能,其降解速率常数大大超过了 Ni/CN 和 Cu/CN。我们对这些催化剂的电子和自旋极化特性进行了研究,发现它们在催化效率方面起着关键作用,其中以氧化硫自由基介导的反应为主。值得注意的是,在可见光下,催化活性得到了增强,这归因于氧化硫自由基生成的增加和电子捐赠-捐赠动态的加强。研究表明,Fe/CN 的 d 带中心接近费米级,同时具有高自旋极化,这改善了亚硫酸盐的吸附性并减小了 HOMO-LUMO 间隙,从而加速了光助亚硫酸盐活化。这项研究加深了人们对环境应用中的 SAC 的了解,并为未来的水处理技术奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Understanding the role of transition metal single-atom electronic structure in oxysulfur radical-mediated oxidative degradation

Understanding the role of transition metal single-atom electronic structure in oxysulfur radical-mediated oxidative degradation

The ubiquity of refractory organic matter in aquatic environments necessitates innovative removal strategies. Sulfate radical-based advanced oxidation has emerged as an attractive solution, offering high selectivity, enduring efficacy, and anti-interference ability. Among many technologies, sulfite activation, leveraging its cost-effectiveness and lower toxicity compared to conventional persulfates, stands out. Yet, the activation process often relies on transition metals, suffering from low atom utilization. Here we introduce a series of single-atom catalysts (SACs) employing transition metals on g-C3N4 substrates, effectively activating sulfite for acetaminophen degradation. We highlight the superior performance of Fe/CN, which demonstrates a degradation rate constant significantly surpassing those of Ni/CN and Cu/CN. Our investigation into the electronic and spin polarization characteristics of these catalysts reveals their critical role in catalytic efficiency, with oxysulfur radical-mediated reactions predominating. Notably, under visible light, the catalytic activity is enhanced, attributed to an increased generation of oxysulfur radicals and a strengthened electron donation-back donation dynamic. The proximity of Fe/CN's d-band center to the Fermi level, alongside its high spin polarization, is shown to improve sulfite adsorption and reduce the HOMO-LUMO gap, thereby accelerating photo-assisted sulfite activation. This work advances the understanding of SACs in environmental applications and lays the groundwork for future water treatment technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信