{"title":"用于林火探测的有效图嵌入式 YOLOv5 模型","authors":"Hui Yuan, Zhumao Lu, Ruizhe Zhang, Jinsong Li, Shuai Wang, Jingjing Fan","doi":"10.1111/coin.12640","DOIUrl":null,"url":null,"abstract":"<p>The existing YOLOv5-based framework has achieved great success in the field of target detection. However, in forest fire detection tasks, there are few high-quality forest fire images available, and the performance of the YOLO model has suffered a serious decline in detecting small-scale forest fires. Making full use of context information can effectively improve the performance of small target detection. To this end, this paper proposes a new graph-embedded YOLOv5 forest fire detection framework, which can improve the performance of small-scale forest fire detection using different scales of context information. To mine local context information, we design a spatial graph convolution operation based on the message passing neural network (MPNN) mechanism. To utilize global context information, we introduce a multi-head self-attention (MSA) module before each YOLO head. The experimental results on FLAME and our self-built fire dataset show that our proposed model improves the accuracy of small-scale forest fire detection. The proposed model achieves high performance in real-time performance by fully utilizing the advantages of the YOLOv5 framework.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective graph embedded YOLOv5 model for forest fire detection\",\"authors\":\"Hui Yuan, Zhumao Lu, Ruizhe Zhang, Jinsong Li, Shuai Wang, Jingjing Fan\",\"doi\":\"10.1111/coin.12640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The existing YOLOv5-based framework has achieved great success in the field of target detection. However, in forest fire detection tasks, there are few high-quality forest fire images available, and the performance of the YOLO model has suffered a serious decline in detecting small-scale forest fires. Making full use of context information can effectively improve the performance of small target detection. To this end, this paper proposes a new graph-embedded YOLOv5 forest fire detection framework, which can improve the performance of small-scale forest fire detection using different scales of context information. To mine local context information, we design a spatial graph convolution operation based on the message passing neural network (MPNN) mechanism. To utilize global context information, we introduce a multi-head self-attention (MSA) module before each YOLO head. The experimental results on FLAME and our self-built fire dataset show that our proposed model improves the accuracy of small-scale forest fire detection. The proposed model achieves high performance in real-time performance by fully utilizing the advantages of the YOLOv5 framework.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12640\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12640","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An effective graph embedded YOLOv5 model for forest fire detection
The existing YOLOv5-based framework has achieved great success in the field of target detection. However, in forest fire detection tasks, there are few high-quality forest fire images available, and the performance of the YOLO model has suffered a serious decline in detecting small-scale forest fires. Making full use of context information can effectively improve the performance of small target detection. To this end, this paper proposes a new graph-embedded YOLOv5 forest fire detection framework, which can improve the performance of small-scale forest fire detection using different scales of context information. To mine local context information, we design a spatial graph convolution operation based on the message passing neural network (MPNN) mechanism. To utilize global context information, we introduce a multi-head self-attention (MSA) module before each YOLO head. The experimental results on FLAME and our self-built fire dataset show that our proposed model improves the accuracy of small-scale forest fire detection. The proposed model achieves high performance in real-time performance by fully utilizing the advantages of the YOLOv5 framework.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.