{"title":"用于少量图像分类的多尺度注意力","authors":"Tong Zhou, Changyin Dong, Junshu Song, Zhiqiang Zhang, Zhen Wang, Bo Chang, Dechun Chen","doi":"10.1111/coin.12639","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the application of traditional deep learning methods in the agricultural field using remote sensing techniques, such as crop area and growth monitoring, crop classification, and agricultural disaster monitoring, has been greatly facilitated by advancements in deep learning. The accuracy of image classification plays a crucial role in these applications. Although traditional deep learning methods have achieved significant success in remote sensing image classification, they often involve convolutional neural networks with a large number of parameters that require extensive optimization using numerous remote sensing images for training purposes. To address these challenges, we propose a novel approach called multiscale attention network (MAN) for sample-based remote sensing image classification. This method consists primarily of feature extractors and attention modules to effectively utilize different scale features through multiscale feature training during the training phase. We evaluate our proposed method on three datasets comprising agricultural remote sensing images and observe superior performance compared to existing approaches. Furthermore, we validate its generalizability by testing it on an oil well indicator diagram specifically designed for classification tasks.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale attention for few-shot image classification\",\"authors\":\"Tong Zhou, Changyin Dong, Junshu Song, Zhiqiang Zhang, Zhen Wang, Bo Chang, Dechun Chen\",\"doi\":\"10.1111/coin.12639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, the application of traditional deep learning methods in the agricultural field using remote sensing techniques, such as crop area and growth monitoring, crop classification, and agricultural disaster monitoring, has been greatly facilitated by advancements in deep learning. The accuracy of image classification plays a crucial role in these applications. Although traditional deep learning methods have achieved significant success in remote sensing image classification, they often involve convolutional neural networks with a large number of parameters that require extensive optimization using numerous remote sensing images for training purposes. To address these challenges, we propose a novel approach called multiscale attention network (MAN) for sample-based remote sensing image classification. This method consists primarily of feature extractors and attention modules to effectively utilize different scale features through multiscale feature training during the training phase. We evaluate our proposed method on three datasets comprising agricultural remote sensing images and observe superior performance compared to existing approaches. Furthermore, we validate its generalizability by testing it on an oil well indicator diagram specifically designed for classification tasks.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12639\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12639","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multiscale attention for few-shot image classification
In recent years, the application of traditional deep learning methods in the agricultural field using remote sensing techniques, such as crop area and growth monitoring, crop classification, and agricultural disaster monitoring, has been greatly facilitated by advancements in deep learning. The accuracy of image classification plays a crucial role in these applications. Although traditional deep learning methods have achieved significant success in remote sensing image classification, they often involve convolutional neural networks with a large number of parameters that require extensive optimization using numerous remote sensing images for training purposes. To address these challenges, we propose a novel approach called multiscale attention network (MAN) for sample-based remote sensing image classification. This method consists primarily of feature extractors and attention modules to effectively utilize different scale features through multiscale feature training during the training phase. We evaluate our proposed method on three datasets comprising agricultural remote sensing images and observe superior performance compared to existing approaches. Furthermore, we validate its generalizability by testing it on an oil well indicator diagram specifically designed for classification tasks.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.