{"title":"用于分子通讯的微流体系统:从理论到实践的回顾","authors":"Medina Hamidović;Stefan Angerbauer;Dadi Bi;Yansha Deng;Tuna Tugcu;Werner Haselmayr","doi":"10.1109/TMBMC.2024.3368768","DOIUrl":null,"url":null,"abstract":"The paper presents the significance of microfluidic technology in advancing Molecular Communications (MC). It highlights the transition from theoretical MC models to practical applications, emphasizing the role of microfluidics in validating and advancing MC concepts. The paper covers various aspects including theoretical principles, simulation tools, practical realizations, and envisioned applications. We also present various microfluidic testbeds, detailing their design, capabilities, and applications in advancing MC. To bridge the gap between theoretical models and practical outcomes in MC, this work demonstrates the potential of microfluidics in the practical realization of MC systems.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10443866","citationCount":"0","resultStr":"{\"title\":\"Microfluidic Systems for Molecular Communications: A Review From Theory to Practice\",\"authors\":\"Medina Hamidović;Stefan Angerbauer;Dadi Bi;Yansha Deng;Tuna Tugcu;Werner Haselmayr\",\"doi\":\"10.1109/TMBMC.2024.3368768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the significance of microfluidic technology in advancing Molecular Communications (MC). It highlights the transition from theoretical MC models to practical applications, emphasizing the role of microfluidics in validating and advancing MC concepts. The paper covers various aspects including theoretical principles, simulation tools, practical realizations, and envisioned applications. We also present various microfluidic testbeds, detailing their design, capabilities, and applications in advancing MC. To bridge the gap between theoretical models and practical outcomes in MC, this work demonstrates the potential of microfluidics in the practical realization of MC systems.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10443866\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10443866/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10443866/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了微流控技术在推进分子通讯(MC)方面的重要意义。它强调了从理论 MC 模型到实际应用的过渡,强调了微流控技术在验证和推进 MC 概念方面的作用。论文涵盖了理论原理、模拟工具、实际实现和设想应用等各个方面。我们还介绍了各种微流控实验平台,详细说明了它们的设计、功能以及在推进 MC 方面的应用。为了缩小 MC 理论模型与实际成果之间的差距,这项工作展示了微流控技术在实际实现 MC 系统方面的潜力。
Microfluidic Systems for Molecular Communications: A Review From Theory to Practice
The paper presents the significance of microfluidic technology in advancing Molecular Communications (MC). It highlights the transition from theoretical MC models to practical applications, emphasizing the role of microfluidics in validating and advancing MC concepts. The paper covers various aspects including theoretical principles, simulation tools, practical realizations, and envisioned applications. We also present various microfluidic testbeds, detailing their design, capabilities, and applications in advancing MC. To bridge the gap between theoretical models and practical outcomes in MC, this work demonstrates the potential of microfluidics in the practical realization of MC systems.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.