用于中温固体氧化物电池的高活性、高稳定性 A 位缺陷 La0.77Sr0.2Co0.2Fe0.8O3-δ 纤维基电极

Xuebai Zhang , Yumeng Li , Ruifan Lin , Yingmin Jin , Fangfang Wang , Yueping Xiong
{"title":"用于中温固体氧化物电池的高活性、高稳定性 A 位缺陷 La0.77Sr0.2Co0.2Fe0.8O3-δ 纤维基电极","authors":"Xuebai Zhang ,&nbsp;Yumeng Li ,&nbsp;Ruifan Lin ,&nbsp;Yingmin Jin ,&nbsp;Fangfang Wang ,&nbsp;Yueping Xiong","doi":"10.1016/j.nxener.2024.100114","DOIUrl":null,"url":null,"abstract":"<div><p>The combination of solid oxide electrolysis cells (SOECs) and solid oxide fuel cells (SOFCs) is expected to solve the problems of energy conversion and storage. However, the insufficient catalytic capacity and poor durability of the oxygen electrodes in solid oxide cells (SOCs) at intermediate temperatures pose a huge challenge for SOCs applications. In this work, A-site deficient La<sub>0.77</sub>Sr<sub>0.2</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> nanorod materials coated with Ce<sub>0.8</sub>Gd<sub>0.2</sub>O<sub>1.9</sub> (GDC) are prepared to suppress cation surface segregation and enhance charge transfer kinetics by reducing internal elastic force of perovskite and meanwhile applying external compressive stress with an oxygen-ion conductor. As a result, the composite cathode with a GDC to La<sub>0.77</sub>Sr<sub>0.2</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> weight ratio of 0.59 (La<sub>0.77</sub>Sr<sub>0.2</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub>@GDC0.59) exhibits excellent electrochemical performance and long-term stability when operating in both SOFCs and SOECs modes. XPS results show that the La<sub>0.77</sub>Sr<sub>0.2</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub>@GDC0.59 oxygen electrode exhibits no significant Sr/Fe surface segregation after operating in SOFCs and SOECs modes for 200 h. Density functional theory calculation and physiochemical characterization confirm that Sr segregation phenomenon is well inhibited through the novel A-site deficient structural design of perovskite materials, which eliminates the major residual internal elastic force of La<sub>0.8</sub>Sr<sub>0.2</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> crystal, and GDC coating further relieves the lattice transformation of La<sub>0.77</sub>Sr<sub>0.2</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> upon the additional introduction of A-site deficiency and oxygen vacancy. This well-orchestrated composite cathode design provides a new perspective in stabilizing perovskite crystalline structure toward high-performance SOCs with extended operating life.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X2400019X/pdfft?md5=cb599675367551cc0da88a62cbd4c2a6&pid=1-s2.0-S2949821X2400019X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Highly active and robust A-site deficient La0.77Sr0.2Co0.2Fe0.8O3-δ fiber base electrode for intermediate temperature solid oxide cells\",\"authors\":\"Xuebai Zhang ,&nbsp;Yumeng Li ,&nbsp;Ruifan Lin ,&nbsp;Yingmin Jin ,&nbsp;Fangfang Wang ,&nbsp;Yueping Xiong\",\"doi\":\"10.1016/j.nxener.2024.100114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The combination of solid oxide electrolysis cells (SOECs) and solid oxide fuel cells (SOFCs) is expected to solve the problems of energy conversion and storage. However, the insufficient catalytic capacity and poor durability of the oxygen electrodes in solid oxide cells (SOCs) at intermediate temperatures pose a huge challenge for SOCs applications. In this work, A-site deficient La<sub>0.77</sub>Sr<sub>0.2</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> nanorod materials coated with Ce<sub>0.8</sub>Gd<sub>0.2</sub>O<sub>1.9</sub> (GDC) are prepared to suppress cation surface segregation and enhance charge transfer kinetics by reducing internal elastic force of perovskite and meanwhile applying external compressive stress with an oxygen-ion conductor. As a result, the composite cathode with a GDC to La<sub>0.77</sub>Sr<sub>0.2</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> weight ratio of 0.59 (La<sub>0.77</sub>Sr<sub>0.2</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub>@GDC0.59) exhibits excellent electrochemical performance and long-term stability when operating in both SOFCs and SOECs modes. XPS results show that the La<sub>0.77</sub>Sr<sub>0.2</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub>@GDC0.59 oxygen electrode exhibits no significant Sr/Fe surface segregation after operating in SOFCs and SOECs modes for 200 h. Density functional theory calculation and physiochemical characterization confirm that Sr segregation phenomenon is well inhibited through the novel A-site deficient structural design of perovskite materials, which eliminates the major residual internal elastic force of La<sub>0.8</sub>Sr<sub>0.2</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> crystal, and GDC coating further relieves the lattice transformation of La<sub>0.77</sub>Sr<sub>0.2</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> upon the additional introduction of A-site deficiency and oxygen vacancy. This well-orchestrated composite cathode design provides a new perspective in stabilizing perovskite crystalline structure toward high-performance SOCs with extended operating life.</p></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949821X2400019X/pdfft?md5=cb599675367551cc0da88a62cbd4c2a6&pid=1-s2.0-S2949821X2400019X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X2400019X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X2400019X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

固体氧化物电解池(SOECs)和固体氧化物燃料电池(SOFCs)的结合有望解决能量转换和储存问题。然而,在中温条件下,固体氧化物电池(SOCs)中氧电极的催化能力不足且耐久性差,这给 SOCs 的应用带来了巨大挑战。在这项工作中,制备了涂覆有 Ce0.8Gd0.2O1.9 (GDC) 的 A 位缺陷 La0.77Sr0.2Co0.2Fe0.8O3-δ 纳米棒材料,通过降低过氧化物的内部弹性力,同时施加氧离子导体的外部压应力,抑制阳离子表面偏析并增强电荷转移动力学。因此,GDC 与 La0.77Sr0.2Co0.2Fe0.8O3-δ 重量比为 0.59 (La0.77Sr0.2Co0.2Fe0.8O3-δ@GDC0.59) 的复合阴极在 SOFCs 和 SOECs 模式下工作时都表现出优异的电化学性能和长期稳定性。XPS 结果表明,La0.77Sr0.2Co0.2Fe0.8O3-δ@GDC0.59 氧电极在 SOFCs 和 SOECs 模式下运行 200 小时后,没有出现明显的 Sr/Fe 表面偏析。密度泛函理论计算和理化表征证实,包晶材料的新型 A 位缺陷结构设计消除了 La0.8Sr0.2Co0.2Fe0.8O3-δ 晶体的主要残余内弹力,从而很好地抑制了硒偏析现象;GDC 涂层在额外引入 A 位缺陷和氧空位后,进一步缓解了 La0.77Sr0.2Co0.2Fe0.8O3-δ 的晶格转变。这种精心策划的复合阴极设计为稳定包晶晶体结构、实现具有更长工作寿命的高性能 SOC 提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly active and robust A-site deficient La0.77Sr0.2Co0.2Fe0.8O3-δ fiber base electrode for intermediate temperature solid oxide cells

Highly active and robust A-site deficient La0.77Sr0.2Co0.2Fe0.8O3-δ fiber base electrode for intermediate temperature solid oxide cells

The combination of solid oxide electrolysis cells (SOECs) and solid oxide fuel cells (SOFCs) is expected to solve the problems of energy conversion and storage. However, the insufficient catalytic capacity and poor durability of the oxygen electrodes in solid oxide cells (SOCs) at intermediate temperatures pose a huge challenge for SOCs applications. In this work, A-site deficient La0.77Sr0.2Co0.2Fe0.8O3-δ nanorod materials coated with Ce0.8Gd0.2O1.9 (GDC) are prepared to suppress cation surface segregation and enhance charge transfer kinetics by reducing internal elastic force of perovskite and meanwhile applying external compressive stress with an oxygen-ion conductor. As a result, the composite cathode with a GDC to La0.77Sr0.2Co0.2Fe0.8O3-δ weight ratio of 0.59 (La0.77Sr0.2Co0.2Fe0.8O3-δ@GDC0.59) exhibits excellent electrochemical performance and long-term stability when operating in both SOFCs and SOECs modes. XPS results show that the La0.77Sr0.2Co0.2Fe0.8O3-δ@GDC0.59 oxygen electrode exhibits no significant Sr/Fe surface segregation after operating in SOFCs and SOECs modes for 200 h. Density functional theory calculation and physiochemical characterization confirm that Sr segregation phenomenon is well inhibited through the novel A-site deficient structural design of perovskite materials, which eliminates the major residual internal elastic force of La0.8Sr0.2Co0.2Fe0.8O3-δ crystal, and GDC coating further relieves the lattice transformation of La0.77Sr0.2Co0.2Fe0.8O3-δ upon the additional introduction of A-site deficiency and oxygen vacancy. This well-orchestrated composite cathode design provides a new perspective in stabilizing perovskite crystalline structure toward high-performance SOCs with extended operating life.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信