高负载铂钴金属间化合物可增强膜电极组件的氧气还原活性

Yi Zhang , Yao-Lin A , Xiao-Qun Xie , Di-Ye Wei , Tao Shen , Qing-Na Zheng , Jin-Chao Dong , Jing-Hua Tian , Hua Zhang , Jian-Feng Li
{"title":"高负载铂钴金属间化合物可增强膜电极组件的氧气还原活性","authors":"Yi Zhang ,&nbsp;Yao-Lin A ,&nbsp;Xiao-Qun Xie ,&nbsp;Di-Ye Wei ,&nbsp;Tao Shen ,&nbsp;Qing-Na Zheng ,&nbsp;Jin-Chao Dong ,&nbsp;Jing-Hua Tian ,&nbsp;Hua Zhang ,&nbsp;Jian-Feng Li","doi":"10.1016/j.nxnano.2024.100065","DOIUrl":null,"url":null,"abstract":"<div><p>Platinum-based intermetallic compounds (IMCs) are emerging as promising oxygen reduction reaction (ORR) catalysts in proton exchange membrane fuel cells (PEMFCs). However, large-scale synthesis of supported IMCs catalysts with small particle size and high loading remains a significant challenge, greatly hindering the applications of IMCs in PEMFCs. Herein, carbon-supported PtCo IMCs with a metal loading of ∼40% and a mean size of ∼5 nm were successfully prepared via a simple impregnation method and display excellent performances in membrane electrode assemblies (MEA). The ordering degree of the PtCo IMCs can be tuned by carefully manipulating the annealing conditions. X-ray photoelectron spectroscopy characterizations demonstrate that the electronic interactions between Pt and Co are strengthened due to highly ordered structure of PtCo IMCs, thus promoting the ORR performance. The optimized PtCo IMCs exhibit an excellent ORR performance with a specific activity of 2.02 mA cm<sup>−2</sup> and mass activity of 0.92 A mgPt<sup>−1</sup> at 0.9 V (vs. RHE), which are approximately 5 times and 6 times higher than those of the commercial Pt/C. More importantly, the PtCo IMCs also display enhanced performance in MEA, and the power density at 1.5 A cm<sup>−2</sup> and 2.5 A cm<sup>−2</sup> is 0.949 W cm<sup>−2</sup> and 1.244 W cm<sup>−2</sup>, respectively, thus reducing the Pt usage by 40% compared to Pt/C. This work offers a facile route for the scale preparation of platinum-based intermetallic compounds and promotes their practical applications in PEMFCs.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000263/pdfft?md5=d36ad1dda910b75d763085687d864d2e&pid=1-s2.0-S2949829524000263-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High-Loading Platinum-Cobalt Intermetallic Compounds with Enhanced Oxygen Reduction Activity in Membrane Electrode Assemblies\",\"authors\":\"Yi Zhang ,&nbsp;Yao-Lin A ,&nbsp;Xiao-Qun Xie ,&nbsp;Di-Ye Wei ,&nbsp;Tao Shen ,&nbsp;Qing-Na Zheng ,&nbsp;Jin-Chao Dong ,&nbsp;Jing-Hua Tian ,&nbsp;Hua Zhang ,&nbsp;Jian-Feng Li\",\"doi\":\"10.1016/j.nxnano.2024.100065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Platinum-based intermetallic compounds (IMCs) are emerging as promising oxygen reduction reaction (ORR) catalysts in proton exchange membrane fuel cells (PEMFCs). However, large-scale synthesis of supported IMCs catalysts with small particle size and high loading remains a significant challenge, greatly hindering the applications of IMCs in PEMFCs. Herein, carbon-supported PtCo IMCs with a metal loading of ∼40% and a mean size of ∼5 nm were successfully prepared via a simple impregnation method and display excellent performances in membrane electrode assemblies (MEA). The ordering degree of the PtCo IMCs can be tuned by carefully manipulating the annealing conditions. X-ray photoelectron spectroscopy characterizations demonstrate that the electronic interactions between Pt and Co are strengthened due to highly ordered structure of PtCo IMCs, thus promoting the ORR performance. The optimized PtCo IMCs exhibit an excellent ORR performance with a specific activity of 2.02 mA cm<sup>−2</sup> and mass activity of 0.92 A mgPt<sup>−1</sup> at 0.9 V (vs. RHE), which are approximately 5 times and 6 times higher than those of the commercial Pt/C. More importantly, the PtCo IMCs also display enhanced performance in MEA, and the power density at 1.5 A cm<sup>−2</sup> and 2.5 A cm<sup>−2</sup> is 0.949 W cm<sup>−2</sup> and 1.244 W cm<sup>−2</sup>, respectively, thus reducing the Pt usage by 40% compared to Pt/C. This work offers a facile route for the scale preparation of platinum-based intermetallic compounds and promotes their practical applications in PEMFCs.</p></div>\",\"PeriodicalId\":100959,\"journal\":{\"name\":\"Next Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949829524000263/pdfft?md5=d36ad1dda910b75d763085687d864d2e&pid=1-s2.0-S2949829524000263-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949829524000263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829524000263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铂基金属间化合物(IMCs)正在成为质子交换膜燃料电池(PEMFCs)中前景广阔的氧还原反应(ORR)催化剂。然而,大规模合成具有小粒径和高负载的支撑型 IMC 催化剂仍然是一项重大挑战,极大地阻碍了 IMC 在 PEMFC 中的应用。本文通过简单的浸渍法成功制备了金属负载量为 40%、平均粒径为 5nm 的碳支撑铂钴 IMC,并在膜电极组件(MEA)中显示出优异的性能。铂钴 IMC 的有序度可通过仔细调节退火条件来调整。X 射线光电子能谱表征表明,铂钴 IMCs 的高度有序结构加强了铂和钴之间的电子相互作用,从而提高了 ORR 性能。优化后的铂钴 IMC 具有优异的 ORR 性能,在 0.9 V(相对于 RHE)电压下,比活度为 2.02 mA cm-2,质量活度为 0.92 A mgPt-1,分别是商用 Pt/C 的 5 倍和 6 倍。更重要的是,铂钴 IMC 在 MEA 中也显示出更高的性能,在 1.5 A cm-2 和 2.5 A cm-2 时的功率密度分别为 0.949 W cm-2 和 1.244 W cm-2,从而比 Pt/C 减少了 40% 的铂用量。这项工作为大规模制备铂基金属间化合物提供了一条简便的途径,并促进了它们在 PEMFC 中的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Loading Platinum-Cobalt Intermetallic Compounds with Enhanced Oxygen Reduction Activity in Membrane Electrode Assemblies

Platinum-based intermetallic compounds (IMCs) are emerging as promising oxygen reduction reaction (ORR) catalysts in proton exchange membrane fuel cells (PEMFCs). However, large-scale synthesis of supported IMCs catalysts with small particle size and high loading remains a significant challenge, greatly hindering the applications of IMCs in PEMFCs. Herein, carbon-supported PtCo IMCs with a metal loading of ∼40% and a mean size of ∼5 nm were successfully prepared via a simple impregnation method and display excellent performances in membrane electrode assemblies (MEA). The ordering degree of the PtCo IMCs can be tuned by carefully manipulating the annealing conditions. X-ray photoelectron spectroscopy characterizations demonstrate that the electronic interactions between Pt and Co are strengthened due to highly ordered structure of PtCo IMCs, thus promoting the ORR performance. The optimized PtCo IMCs exhibit an excellent ORR performance with a specific activity of 2.02 mA cm−2 and mass activity of 0.92 A mgPt−1 at 0.9 V (vs. RHE), which are approximately 5 times and 6 times higher than those of the commercial Pt/C. More importantly, the PtCo IMCs also display enhanced performance in MEA, and the power density at 1.5 A cm−2 and 2.5 A cm−2 is 0.949 W cm−2 and 1.244 W cm−2, respectively, thus reducing the Pt usage by 40% compared to Pt/C. This work offers a facile route for the scale preparation of platinum-based intermetallic compounds and promotes their practical applications in PEMFCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信