通过数值分析探索蛇形流场燃料电池、直管道 PEM 燃料电池高温的可持续性

IF 8 Q1 ENERGY & FUELS
Mohamed-Amine Babay , Mustapha Adar , Ahmed Chebak , Mustapha Mabrouki
{"title":"通过数值分析探索蛇形流场燃料电池、直管道 PEM 燃料电池高温的可持续性","authors":"Mohamed-Amine Babay ,&nbsp;Mustapha Adar ,&nbsp;Ahmed Chebak ,&nbsp;Mustapha Mabrouki","doi":"10.1016/j.nexus.2024.100283","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on investigating the performance dynamics of high-temperature Proton Exchange Membrane fuel cells, with an emphasis on critical design parameters. Utilizing a comprehensive mathematical model, the research explores concentration profiles, current density profiles, and polarization curves within a three-dimensional, isothermal, steady-state PEM fuel cell.</p><p>The model incorporates the intricate processes of gas transport in anode and cathode channels, diffusion in catalyst layers, and the transport of water and hydronium ions in both the polymer electrolyte and catalyst layers. Additionally, it accounts for electrical current transport in the solid phase. Simulations conducted with Comsol Multiphysics 6.1 demonstrate a robust alignment between model results and experimental polarization data obtained at 180 °C. Optimal conditions for performance are outlined, specifying an inlet hydrogen gas velocity of 0.12 m/s and an inlet air velocity of 1.2 m/s, with consideration for a proton conductivity of 9.825 S/m.</p><p>In a parallel investigation, numerical analysis assesses the sustainability of Serpentine Flow-Field PEM fuel cells, using critical parameters. The model applied in this research considers gas, water, and electrical current transport across various layers of the fuel cell, with a crucial focus on optimizing the membrane electrode assembly's design. The finite element method and ANSYS Fluent are employed for model solution.</p><p>This study contributes significantly to the understanding of HT-PEM fuel cell dynamics, providing insights into the interdependencies of design parameters and their impact on system performance. The study emphasizes the pivotal roles of air and hydrogen inlet velocities in shaping fuel cell performance, elucidating the intricate dynamics dictating reactant distributions within diverse cell components.</p></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772427124000147/pdfft?md5=27816e58d75c2c0d8bbea90f71480858&pid=1-s2.0-S2772427124000147-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring the sustainability of serpentine flow-field fuel cell, straight channel PEM fuel cells hight temperature through numerical analysis\",\"authors\":\"Mohamed-Amine Babay ,&nbsp;Mustapha Adar ,&nbsp;Ahmed Chebak ,&nbsp;Mustapha Mabrouki\",\"doi\":\"10.1016/j.nexus.2024.100283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focuses on investigating the performance dynamics of high-temperature Proton Exchange Membrane fuel cells, with an emphasis on critical design parameters. Utilizing a comprehensive mathematical model, the research explores concentration profiles, current density profiles, and polarization curves within a three-dimensional, isothermal, steady-state PEM fuel cell.</p><p>The model incorporates the intricate processes of gas transport in anode and cathode channels, diffusion in catalyst layers, and the transport of water and hydronium ions in both the polymer electrolyte and catalyst layers. Additionally, it accounts for electrical current transport in the solid phase. Simulations conducted with Comsol Multiphysics 6.1 demonstrate a robust alignment between model results and experimental polarization data obtained at 180 °C. Optimal conditions for performance are outlined, specifying an inlet hydrogen gas velocity of 0.12 m/s and an inlet air velocity of 1.2 m/s, with consideration for a proton conductivity of 9.825 S/m.</p><p>In a parallel investigation, numerical analysis assesses the sustainability of Serpentine Flow-Field PEM fuel cells, using critical parameters. The model applied in this research considers gas, water, and electrical current transport across various layers of the fuel cell, with a crucial focus on optimizing the membrane electrode assembly's design. The finite element method and ANSYS Fluent are employed for model solution.</p><p>This study contributes significantly to the understanding of HT-PEM fuel cell dynamics, providing insights into the interdependencies of design parameters and their impact on system performance. The study emphasizes the pivotal roles of air and hydrogen inlet velocities in shaping fuel cell performance, elucidating the intricate dynamics dictating reactant distributions within diverse cell components.</p></div>\",\"PeriodicalId\":93548,\"journal\":{\"name\":\"Energy nexus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772427124000147/pdfft?md5=27816e58d75c2c0d8bbea90f71480858&pid=1-s2.0-S2772427124000147-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772427124000147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427124000147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究侧重于调查高温质子交换膜燃料电池的性能动态,重点是关键设计参数。该模型包含阳极和阴极通道中的气体传输、催化剂层中的扩散以及聚合物电解质和催化剂层中的水和氢离子传输等复杂过程。此外,它还考虑了固相中的电流传输。使用 Comsol Multiphysics 6.1 进行的仿真表明,模型结果与 180 °C 时获得的实验极化数据非常吻合。在平行研究中,数值分析利用关键参数评估了蛇形流场 PEM 燃料电池的可持续性。这项研究采用的模型考虑了燃料电池各层的气体、水和电流传输,重点是优化膜电极组件的设计。这项研究极大地促进了人们对 HT-PEM 燃料电池动力学的理解,让人们深入了解了设计参数的相互依存关系及其对系统性能的影响。研究强调了空气和氢气入口速度在塑造燃料电池性能方面的关键作用,阐明了决定不同电池组件内反应物分布的复杂动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the sustainability of serpentine flow-field fuel cell, straight channel PEM fuel cells hight temperature through numerical analysis

This study focuses on investigating the performance dynamics of high-temperature Proton Exchange Membrane fuel cells, with an emphasis on critical design parameters. Utilizing a comprehensive mathematical model, the research explores concentration profiles, current density profiles, and polarization curves within a three-dimensional, isothermal, steady-state PEM fuel cell.

The model incorporates the intricate processes of gas transport in anode and cathode channels, diffusion in catalyst layers, and the transport of water and hydronium ions in both the polymer electrolyte and catalyst layers. Additionally, it accounts for electrical current transport in the solid phase. Simulations conducted with Comsol Multiphysics 6.1 demonstrate a robust alignment between model results and experimental polarization data obtained at 180 °C. Optimal conditions for performance are outlined, specifying an inlet hydrogen gas velocity of 0.12 m/s and an inlet air velocity of 1.2 m/s, with consideration for a proton conductivity of 9.825 S/m.

In a parallel investigation, numerical analysis assesses the sustainability of Serpentine Flow-Field PEM fuel cells, using critical parameters. The model applied in this research considers gas, water, and electrical current transport across various layers of the fuel cell, with a crucial focus on optimizing the membrane electrode assembly's design. The finite element method and ANSYS Fluent are employed for model solution.

This study contributes significantly to the understanding of HT-PEM fuel cell dynamics, providing insights into the interdependencies of design parameters and their impact on system performance. The study emphasizes the pivotal roles of air and hydrogen inlet velocities in shaping fuel cell performance, elucidating the intricate dynamics dictating reactant distributions within diverse cell components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信