Xin Zhou, Xing Chen, Liu Tang, Yi Wang, Jingyue Zheng, Wei Zhang
{"title":"在城市环境中使用智能手机进行事件相关驾驶员压力检测:一项自然驾驶研究。","authors":"Xin Zhou, Xing Chen, Liu Tang, Yi Wang, Jingyue Zheng, Wei Zhang","doi":"10.1080/00140139.2024.2323997","DOIUrl":null,"url":null,"abstract":"<p><p>Driving in urban areas can be challenging and encounter acute stress. To detect driver stress, collecting data on real roads without interfering the driver is preferred. A smartphone-based data collection protocol was developed to support a naturalistic driving study. Sixty-one participants drove on predetermined real road routes, and driving information as well as physiological, psychological, and facial data were collected. The algorithm identified potentially stressful events based on the collected data. Participants classified these events as low, medium, or highly stressful events by watching recorded videos after the experiment. These events were then used to train prediction models. The best model achieved an accuracy of 92.5% in classifying low/medium/highly stressful events. The contribution of physiological, psychological, and facial expression indices and individual profile information was evaluated. The method can be applied to visualise the geographical distribution of stressors, monitor driver behaviour, and help drivers regulate their driving habits.</p>","PeriodicalId":50503,"journal":{"name":"Ergonomics","volume":" ","pages":"1371-1390"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-related driver stress detection with smartphones in an urban environment: a naturalistic driving study.\",\"authors\":\"Xin Zhou, Xing Chen, Liu Tang, Yi Wang, Jingyue Zheng, Wei Zhang\",\"doi\":\"10.1080/00140139.2024.2323997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Driving in urban areas can be challenging and encounter acute stress. To detect driver stress, collecting data on real roads without interfering the driver is preferred. A smartphone-based data collection protocol was developed to support a naturalistic driving study. Sixty-one participants drove on predetermined real road routes, and driving information as well as physiological, psychological, and facial data were collected. The algorithm identified potentially stressful events based on the collected data. Participants classified these events as low, medium, or highly stressful events by watching recorded videos after the experiment. These events were then used to train prediction models. The best model achieved an accuracy of 92.5% in classifying low/medium/highly stressful events. The contribution of physiological, psychological, and facial expression indices and individual profile information was evaluated. The method can be applied to visualise the geographical distribution of stressors, monitor driver behaviour, and help drivers regulate their driving habits.</p>\",\"PeriodicalId\":50503,\"journal\":{\"name\":\"Ergonomics\",\"volume\":\" \",\"pages\":\"1371-1390\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergonomics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00140139.2024.2323997\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2024.2323997","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Event-related driver stress detection with smartphones in an urban environment: a naturalistic driving study.
Driving in urban areas can be challenging and encounter acute stress. To detect driver stress, collecting data on real roads without interfering the driver is preferred. A smartphone-based data collection protocol was developed to support a naturalistic driving study. Sixty-one participants drove on predetermined real road routes, and driving information as well as physiological, psychological, and facial data were collected. The algorithm identified potentially stressful events based on the collected data. Participants classified these events as low, medium, or highly stressful events by watching recorded videos after the experiment. These events were then used to train prediction models. The best model achieved an accuracy of 92.5% in classifying low/medium/highly stressful events. The contribution of physiological, psychological, and facial expression indices and individual profile information was evaluated. The method can be applied to visualise the geographical distribution of stressors, monitor driver behaviour, and help drivers regulate their driving habits.
期刊介绍:
Ergonomics, also known as human factors, is the scientific discipline that seeks to understand and improve human interactions with products, equipment, environments and systems. Drawing upon human biology, psychology, engineering and design, Ergonomics aims to develop and apply knowledge and techniques to optimise system performance, whilst protecting the health, safety and well-being of individuals involved. The attention of ergonomics extends across work, leisure and other aspects of our daily lives.
The journal Ergonomics is an international refereed publication, with a 60 year tradition of disseminating high quality research. Original submissions, both theoretical and applied, are invited from across the subject, including physical, cognitive, organisational and environmental ergonomics. Papers reporting the findings of research from cognate disciplines are also welcome, where these contribute to understanding equipment, tasks, jobs, systems and environments and the corresponding needs, abilities and limitations of people.
All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymous refereeing by independent expert referees.