Juliana Ribeiro Ibiapina Leitão Oliveira, Leonardo Costalonga Rodrigues, Júlia Martinelli Magalhães Kahl, Débora Zorrón Berlinck, Jose Luiz Costa
{"title":"利用分散液-液微萃取法(DLLME)测定口腔液样品中氯胺酮及其代谢物和类似物的绿色毒理学分析程序。","authors":"Juliana Ribeiro Ibiapina Leitão Oliveira, Leonardo Costalonga Rodrigues, Júlia Martinelli Magalhães Kahl, Débora Zorrón Berlinck, Jose Luiz Costa","doi":"10.1093/jat/bkae018","DOIUrl":null,"url":null,"abstract":"<p><p>New psychoactive substances (NPS) are often synthesized via small changes in the molecular structure, producing drugs whose effect and potency are not yet fully known. Ketamine is one of the oldest NPS, with therapeutic use in human and veterinary medicine authorized in several countries, being metabolized mainly into norketamine and 6-hydroxy-norketamine. Furthermore, two structural analogues of ketamine have recently been identified, deschloroketamine and 2-fluorodeschloroketamine, marketed as drugs of abuse. To comply with Green Analytical Toxicology (GAT) fundamentals, miniaturized techniques such as dispersive liquid-liquid microextraction (DLLME) were employed to determine toxicants in biological fluids. An analytical method for determining ketamine, its metabolites and its analogues in oral fluid was fully developed and validated by using DLLME and liquid chromatography-tandem mass spectrometry (LC-MS-MS). The extraction parameters were optimized by multivariate analysis, obtaining the best conditions with 200 μL of sample, 100 μL of methanol as dispersive solvent and 50 μL of chloroform as extractor solvent. Linearity was obtained from 10 to 1,000 ng/mL, with limit of detection (LOD) and lower limit of quantification (LLOQ) at 10 ng/mL. Imprecision (% relative standard deviation) and bias (%) were less than 8.2% and 9.5%, respectively. The matrix effect did not exceed 10.6%, and the recovery values varied from 24% to 42%. No matrix interference and good selectivity in the evaluation of 10 different sources of oral fluid and 42 drugs at 500 ng/mL, respectively, were observed. The method was applied in the analysis of 29 authentic oral fluid samples and had its green characteristic evaluated by three different tools: the Green Analytical Procedure Index (GAPI), the Analytical Eco-Scale and the Analytical GREEnness (AGREE) metrics.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"332-342"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Analytical Toxicology procedure for determination of ketamine, its metabolites and analogues in oral fluid samples using dispersive liquid-liquid microextraction (DLLME).\",\"authors\":\"Juliana Ribeiro Ibiapina Leitão Oliveira, Leonardo Costalonga Rodrigues, Júlia Martinelli Magalhães Kahl, Débora Zorrón Berlinck, Jose Luiz Costa\",\"doi\":\"10.1093/jat/bkae018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>New psychoactive substances (NPS) are often synthesized via small changes in the molecular structure, producing drugs whose effect and potency are not yet fully known. Ketamine is one of the oldest NPS, with therapeutic use in human and veterinary medicine authorized in several countries, being metabolized mainly into norketamine and 6-hydroxy-norketamine. Furthermore, two structural analogues of ketamine have recently been identified, deschloroketamine and 2-fluorodeschloroketamine, marketed as drugs of abuse. To comply with Green Analytical Toxicology (GAT) fundamentals, miniaturized techniques such as dispersive liquid-liquid microextraction (DLLME) were employed to determine toxicants in biological fluids. An analytical method for determining ketamine, its metabolites and its analogues in oral fluid was fully developed and validated by using DLLME and liquid chromatography-tandem mass spectrometry (LC-MS-MS). The extraction parameters were optimized by multivariate analysis, obtaining the best conditions with 200 μL of sample, 100 μL of methanol as dispersive solvent and 50 μL of chloroform as extractor solvent. Linearity was obtained from 10 to 1,000 ng/mL, with limit of detection (LOD) and lower limit of quantification (LLOQ) at 10 ng/mL. Imprecision (% relative standard deviation) and bias (%) were less than 8.2% and 9.5%, respectively. The matrix effect did not exceed 10.6%, and the recovery values varied from 24% to 42%. No matrix interference and good selectivity in the evaluation of 10 different sources of oral fluid and 42 drugs at 500 ng/mL, respectively, were observed. The method was applied in the analysis of 29 authentic oral fluid samples and had its green characteristic evaluated by three different tools: the Green Analytical Procedure Index (GAPI), the Analytical Eco-Scale and the Analytical GREEnness (AGREE) metrics.</p>\",\"PeriodicalId\":14905,\"journal\":{\"name\":\"Journal of analytical toxicology\",\"volume\":\" \",\"pages\":\"332-342\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of analytical toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jat/bkae018\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jat/bkae018","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Green Analytical Toxicology procedure for determination of ketamine, its metabolites and analogues in oral fluid samples using dispersive liquid-liquid microextraction (DLLME).
New psychoactive substances (NPS) are often synthesized via small changes in the molecular structure, producing drugs whose effect and potency are not yet fully known. Ketamine is one of the oldest NPS, with therapeutic use in human and veterinary medicine authorized in several countries, being metabolized mainly into norketamine and 6-hydroxy-norketamine. Furthermore, two structural analogues of ketamine have recently been identified, deschloroketamine and 2-fluorodeschloroketamine, marketed as drugs of abuse. To comply with Green Analytical Toxicology (GAT) fundamentals, miniaturized techniques such as dispersive liquid-liquid microextraction (DLLME) were employed to determine toxicants in biological fluids. An analytical method for determining ketamine, its metabolites and its analogues in oral fluid was fully developed and validated by using DLLME and liquid chromatography-tandem mass spectrometry (LC-MS-MS). The extraction parameters were optimized by multivariate analysis, obtaining the best conditions with 200 μL of sample, 100 μL of methanol as dispersive solvent and 50 μL of chloroform as extractor solvent. Linearity was obtained from 10 to 1,000 ng/mL, with limit of detection (LOD) and lower limit of quantification (LLOQ) at 10 ng/mL. Imprecision (% relative standard deviation) and bias (%) were less than 8.2% and 9.5%, respectively. The matrix effect did not exceed 10.6%, and the recovery values varied from 24% to 42%. No matrix interference and good selectivity in the evaluation of 10 different sources of oral fluid and 42 drugs at 500 ng/mL, respectively, were observed. The method was applied in the analysis of 29 authentic oral fluid samples and had its green characteristic evaluated by three different tools: the Green Analytical Procedure Index (GAPI), the Analytical Eco-Scale and the Analytical GREEnness (AGREE) metrics.
期刊介绍:
The Journal of Analytical Toxicology (JAT) is an international toxicology journal devoted to the timely dissemination of scientific communications concerning potentially toxic substances and drug identification, isolation, and quantitation.
Since its inception in 1977, the Journal of Analytical Toxicology has striven to present state-of-the-art techniques used in toxicology labs. The peer-review process provided by the distinguished members of the Editorial Advisory Board ensures the high-quality and integrity of articles published in the Journal of Analytical Toxicology. Timely presentation of the latest toxicology developments is ensured through Technical Notes, Case Reports, and Letters to the Editor.