{"title":"银纳米粒子通过上调 TRPV1 介导的钙信号通路,刺激 5-氟尿嘧啶诱导的结直肠癌细胞死亡。","authors":"Müge Mavioğlu Kaya","doi":"10.1002/cbin.12141","DOIUrl":null,"url":null,"abstract":"<p>The involvement of the TRP vanilloid 1 (TRPV1) cation channel on the 5-Fluorouracil (5-FU)-caused Ca<sup>2+</sup> signals through the activation of the apoptotic signaling pathway and stimulating the mitochondrial Ca<sup>2+</sup> and Zn<sup>2+</sup> accumulation-induced reactive oxygen species (ROS) productions in several cancer cells, except the colorectal cancer (HT-29) cell line, was recently reported. I aimed to investigate the action of silver nanoparticles (SiNPs) and 5-FU incubations through the activation of TRPV1 on ROS, apoptosis, and cell death in the HT-29 cell line. The cells were divided into four groups: control, SiNP (100 µM for 48 h), 5-FU (25 μM for 24 h), and 5-FU + SiNP. SiNP treatment through TRPV1 activation (via capsaicin) stimulated the oxidant and apoptotic actions of 5-FU in the cells, whereas they were diminished in the cells by the TRPV1 antagonist (capsazepine) treatment. The apoptotic and cell death actions of 5-FU were determined by increasing the propidium iodide/Hoechst rate, caspase-3, -8, and -9 activations, mitochondrial membrane depolarization, lipid peroxidation, and ROS, but decreasing the glutathione and glutathione peroxidase. The increase of cytosolic free Ca<sup>2+</sup> and Zn<sup>2+</sup> into mitochondria via the stimulation of TRPV1 current density increased oxidant and apoptotic properties of 5-FU in the cells. For the therapy of HT-29 tumor cells, I found that the combination of SiNPs and 5-FU was synergistic via TRPV1 activation.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silver nanoparticles stimulate 5-Fluorouracil-induced colorectal cancer cells to kill through the upregulation TRPV1-mediated calcium signaling pathways\",\"authors\":\"Müge Mavioğlu Kaya\",\"doi\":\"10.1002/cbin.12141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The involvement of the TRP vanilloid 1 (TRPV1) cation channel on the 5-Fluorouracil (5-FU)-caused Ca<sup>2+</sup> signals through the activation of the apoptotic signaling pathway and stimulating the mitochondrial Ca<sup>2+</sup> and Zn<sup>2+</sup> accumulation-induced reactive oxygen species (ROS) productions in several cancer cells, except the colorectal cancer (HT-29) cell line, was recently reported. I aimed to investigate the action of silver nanoparticles (SiNPs) and 5-FU incubations through the activation of TRPV1 on ROS, apoptosis, and cell death in the HT-29 cell line. The cells were divided into four groups: control, SiNP (100 µM for 48 h), 5-FU (25 μM for 24 h), and 5-FU + SiNP. SiNP treatment through TRPV1 activation (via capsaicin) stimulated the oxidant and apoptotic actions of 5-FU in the cells, whereas they were diminished in the cells by the TRPV1 antagonist (capsazepine) treatment. The apoptotic and cell death actions of 5-FU were determined by increasing the propidium iodide/Hoechst rate, caspase-3, -8, and -9 activations, mitochondrial membrane depolarization, lipid peroxidation, and ROS, but decreasing the glutathione and glutathione peroxidase. The increase of cytosolic free Ca<sup>2+</sup> and Zn<sup>2+</sup> into mitochondria via the stimulation of TRPV1 current density increased oxidant and apoptotic properties of 5-FU in the cells. For the therapy of HT-29 tumor cells, I found that the combination of SiNPs and 5-FU was synergistic via TRPV1 activation.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12141\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12141","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Silver nanoparticles stimulate 5-Fluorouracil-induced colorectal cancer cells to kill through the upregulation TRPV1-mediated calcium signaling pathways
The involvement of the TRP vanilloid 1 (TRPV1) cation channel on the 5-Fluorouracil (5-FU)-caused Ca2+ signals through the activation of the apoptotic signaling pathway and stimulating the mitochondrial Ca2+ and Zn2+ accumulation-induced reactive oxygen species (ROS) productions in several cancer cells, except the colorectal cancer (HT-29) cell line, was recently reported. I aimed to investigate the action of silver nanoparticles (SiNPs) and 5-FU incubations through the activation of TRPV1 on ROS, apoptosis, and cell death in the HT-29 cell line. The cells were divided into four groups: control, SiNP (100 µM for 48 h), 5-FU (25 μM for 24 h), and 5-FU + SiNP. SiNP treatment through TRPV1 activation (via capsaicin) stimulated the oxidant and apoptotic actions of 5-FU in the cells, whereas they were diminished in the cells by the TRPV1 antagonist (capsazepine) treatment. The apoptotic and cell death actions of 5-FU were determined by increasing the propidium iodide/Hoechst rate, caspase-3, -8, and -9 activations, mitochondrial membrane depolarization, lipid peroxidation, and ROS, but decreasing the glutathione and glutathione peroxidase. The increase of cytosolic free Ca2+ and Zn2+ into mitochondria via the stimulation of TRPV1 current density increased oxidant and apoptotic properties of 5-FU in the cells. For the therapy of HT-29 tumor cells, I found that the combination of SiNPs and 5-FU was synergistic via TRPV1 activation.