{"title":"D=4$D=4$, N=1${\\mathcal {N}}=1$ SYM 的手性环与特殊量规群","authors":"Martin Cederwall, Gabriele Ferretti","doi":"10.1002/prop.202400027","DOIUrl":null,"url":null,"abstract":"<p>The Cachazo–Douglas–Seiberg–Witten conjecture, concerning the algebraic structure of the chiral ring in <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>${\\mathcal {N}}=1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mo>=</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$D=4$</annotation>\n </semantics></math> supersymmetric Yang–Mills theory, is proven for exceptional gauge groups. This completes the proof of the conjecture.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"72 5","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202400027","citationCount":"0","resultStr":"{\"title\":\"The Chiral Ring of \\n \\n \\n D\\n =\\n 4\\n \\n $D=4$\\n , \\n \\n \\n N\\n =\\n 1\\n \\n ${\\\\mathcal {N}}=1$\\n SYM with Exceptional Gauge Groups\",\"authors\":\"Martin Cederwall, Gabriele Ferretti\",\"doi\":\"10.1002/prop.202400027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Cachazo–Douglas–Seiberg–Witten conjecture, concerning the algebraic structure of the chiral ring in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>${\\\\mathcal {N}}=1$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n <mo>=</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$D=4$</annotation>\\n </semantics></math> supersymmetric Yang–Mills theory, is proven for exceptional gauge groups. This completes the proof of the conjecture.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"72 5\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202400027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.202400027\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202400027","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The Chiral Ring of
D
=
4
$D=4$
,
N
=
1
${\mathcal {N}}=1$
SYM with Exceptional Gauge Groups
The Cachazo–Douglas–Seiberg–Witten conjecture, concerning the algebraic structure of the chiral ring in , supersymmetric Yang–Mills theory, is proven for exceptional gauge groups. This completes the proof of the conjecture.
期刊介绍:
The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013).
Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.