球面有限差分法的高度局部化 RBF 拉格朗日函数

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
W. Erb, T. Hangelbroek, F. J. Narcowich, C. Rieger, J. D. Ward
{"title":"球面有限差分法的高度局部化 RBF 拉格朗日函数","authors":"W. Erb, T. Hangelbroek, F. J. Narcowich, C. Rieger, J. D. Ward","doi":"10.1007/s10543-024-01016-x","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to show how rapidly decaying RBF Lagrange functions on the sphere can be used to create a numerically feasible, stable finite difference method based on radial basis functions (an RBF-FD-like method). For certain classes of PDEs this approach leads to rigorous convergence estimates for stencils which grow moderately with increasing discretization fineness.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"62 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly localized RBF Lagrange functions for finite difference methods on spheres\",\"authors\":\"W. Erb, T. Hangelbroek, F. J. Narcowich, C. Rieger, J. D. Ward\",\"doi\":\"10.1007/s10543-024-01016-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this paper is to show how rapidly decaying RBF Lagrange functions on the sphere can be used to create a numerically feasible, stable finite difference method based on radial basis functions (an RBF-FD-like method). For certain classes of PDEs this approach leads to rigorous convergence estimates for stencils which grow moderately with increasing discretization fineness.</p>\",\"PeriodicalId\":55351,\"journal\":{\"name\":\"BIT Numerical Mathematics\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIT Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01016-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01016-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在展示如何利用球面上快速衰减的 RBF 拉格朗日函数来创建一种基于径向基函数的数值可行、稳定的有限差分方法(类 RBF-FD 方法)。对于某些类别的 PDEs,这种方法可为随着离散化精细度的增加而适度增长的模板带来严格的收敛估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly localized RBF Lagrange functions for finite difference methods on spheres

The aim of this paper is to show how rapidly decaying RBF Lagrange functions on the sphere can be used to create a numerically feasible, stable finite difference method based on radial basis functions (an RBF-FD-like method). For certain classes of PDEs this approach leads to rigorous convergence estimates for stencils which grow moderately with increasing discretization fineness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BIT Numerical Mathematics
BIT Numerical Mathematics 数学-计算机:软件工程
CiteScore
2.90
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信