利用细胞自动机模型模拟微流控装置中血管瘤的生长和药物反应

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Sijia Liu, Yuewu Li, Chunxiao Chen, Zhiyu Qian, Hongjun Wang, Yamin Yang
{"title":"利用细胞自动机模型模拟微流控装置中血管瘤的生长和药物反应","authors":"Sijia Liu,&nbsp;Yuewu Li,&nbsp;Chunxiao Chen,&nbsp;Zhiyu Qian,&nbsp;Hongjun Wang,&nbsp;Yamin Yang","doi":"10.1007/s10404-024-02717-z","DOIUrl":null,"url":null,"abstract":"<div><p>The microfluidic system is capable of recapitulating key attributes of in vivo circumstances and, therefore, becomes a valuable platform for better understanding tumor growth dynamics and evaluating drug efficiency. While numerical simulations have been envisioned as powerful tools for validating versatile performance of advanced microfluidic platforms, cell growth within these microchannels has not yet been theoretically modeled. In this paper, we developed an experimental data-driven cellular automaton model, which was adopted for simulating cell behaviors and drug responses in a microfluidic system. The boundaries of the cellular automata lattices and prohibited zones for simulation were directly converted from microscopic images of cell morphology and the microchamber configuration. The dynamic progression of tumor growth at the avascular stage was predicted by incorporating the biophysical and molecular characteristics of cells and their interactions with surrounding environment. The simulated proliferation rate of tumor cells over time demonstrated its dependency on nutrient delivery, aligning well with experimental observations in the microfluidic culture. The spatiotemporal efficacy of the chemotherapeutic compound doxorubicin (DOX) on the microfluidic culture was also simulated. The similarity between in silico simulations and in vitro tumor response upon drug interaction highlighted the potential of the computational models as complementary tools for predicting the drug treatment efficacy with acceptable accuracy before practical applications.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of avascular tumor growth and drug response in a microfluidic device with a cellular automaton model\",\"authors\":\"Sijia Liu,&nbsp;Yuewu Li,&nbsp;Chunxiao Chen,&nbsp;Zhiyu Qian,&nbsp;Hongjun Wang,&nbsp;Yamin Yang\",\"doi\":\"10.1007/s10404-024-02717-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The microfluidic system is capable of recapitulating key attributes of in vivo circumstances and, therefore, becomes a valuable platform for better understanding tumor growth dynamics and evaluating drug efficiency. While numerical simulations have been envisioned as powerful tools for validating versatile performance of advanced microfluidic platforms, cell growth within these microchannels has not yet been theoretically modeled. In this paper, we developed an experimental data-driven cellular automaton model, which was adopted for simulating cell behaviors and drug responses in a microfluidic system. The boundaries of the cellular automata lattices and prohibited zones for simulation were directly converted from microscopic images of cell morphology and the microchamber configuration. The dynamic progression of tumor growth at the avascular stage was predicted by incorporating the biophysical and molecular characteristics of cells and their interactions with surrounding environment. The simulated proliferation rate of tumor cells over time demonstrated its dependency on nutrient delivery, aligning well with experimental observations in the microfluidic culture. The spatiotemporal efficacy of the chemotherapeutic compound doxorubicin (DOX) on the microfluidic culture was also simulated. The similarity between in silico simulations and in vitro tumor response upon drug interaction highlighted the potential of the computational models as complementary tools for predicting the drug treatment efficacy with acceptable accuracy before practical applications.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-024-02717-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02717-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

微流控系统能够再现体内环境的关键属性,因此成为更好地了解肿瘤生长动态和评估药物效率的宝贵平台。虽然数值模拟已被视为验证先进微流控平台多功能性能的有力工具,但这些微通道内的细胞生长尚未从理论上建模。本文开发了一种实验数据驱动的细胞自动机模型,用于模拟微流控系统中的细胞行为和药物反应。细胞自动机晶格和模拟禁区的边界直接由细胞形态和微腔配置的显微图像转换而来。通过结合细胞的生物物理和分子特征及其与周围环境的相互作用,预测了肿瘤在无血管阶段的动态生长过程。随着时间的推移,模拟的肿瘤细胞增殖率显示了其对营养输送的依赖性,这与微流控培养中的实验观察结果十分吻合。此外,还模拟了化疗化合物多柔比星(DOX)对微流体培养物的时空效力。硅学模拟与药物相互作用时体外肿瘤反应之间的相似性凸显了计算模型作为补充工具的潜力,可在实际应用前以可接受的准确度预测药物疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simulation of avascular tumor growth and drug response in a microfluidic device with a cellular automaton model

Simulation of avascular tumor growth and drug response in a microfluidic device with a cellular automaton model

The microfluidic system is capable of recapitulating key attributes of in vivo circumstances and, therefore, becomes a valuable platform for better understanding tumor growth dynamics and evaluating drug efficiency. While numerical simulations have been envisioned as powerful tools for validating versatile performance of advanced microfluidic platforms, cell growth within these microchannels has not yet been theoretically modeled. In this paper, we developed an experimental data-driven cellular automaton model, which was adopted for simulating cell behaviors and drug responses in a microfluidic system. The boundaries of the cellular automata lattices and prohibited zones for simulation were directly converted from microscopic images of cell morphology and the microchamber configuration. The dynamic progression of tumor growth at the avascular stage was predicted by incorporating the biophysical and molecular characteristics of cells and their interactions with surrounding environment. The simulated proliferation rate of tumor cells over time demonstrated its dependency on nutrient delivery, aligning well with experimental observations in the microfluidic culture. The spatiotemporal efficacy of the chemotherapeutic compound doxorubicin (DOX) on the microfluidic culture was also simulated. The similarity between in silico simulations and in vitro tumor response upon drug interaction highlighted the potential of the computational models as complementary tools for predicting the drug treatment efficacy with acceptable accuracy before practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信