{"title":"费米子和玻色高斯态的克雷洛夫复杂性","authors":"Kiran Adhikari, Adwait Rijal, Ashok Kumar Aryal, Mausam Ghimire, Rajeev Singh, Christian Deppe","doi":"10.1002/prop.202400014","DOIUrl":null,"url":null,"abstract":"<p>The concept of <i>complexity</i> has become pivotal in multiple disciplines, including quantum information, where it serves as an alternative metric for gauging the chaotic evolution of a quantum state. This paper focuses on <i>Krylov complexity</i>, a specialized form of quantum complexity that offers an unambiguous and intrinsically meaningful assessment of the spread of a quantum state over all possible orthogonal bases. This study is situated in the context of Gaussian quantum states, which are fundamental to both Bosonic and Fermionic systems and can be fully described by a covariance matrix. While the covariance matrix is essential, it is insufficient alone for calculating Krylov complexity due to its lack of relative phase information is shown. The relative covariance matrix can provide an upper bound for Krylov complexity for Gaussian quantum states is suggested. The implications of Krylov complexity for theories proposing complexity as a candidate for holographic duality by computing Krylov complexity for the thermofield double States (TFD) and Dirac field are also explored.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"72 5","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Krylov Complexity of Fermionic and Bosonic Gaussian States\",\"authors\":\"Kiran Adhikari, Adwait Rijal, Ashok Kumar Aryal, Mausam Ghimire, Rajeev Singh, Christian Deppe\",\"doi\":\"10.1002/prop.202400014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The concept of <i>complexity</i> has become pivotal in multiple disciplines, including quantum information, where it serves as an alternative metric for gauging the chaotic evolution of a quantum state. This paper focuses on <i>Krylov complexity</i>, a specialized form of quantum complexity that offers an unambiguous and intrinsically meaningful assessment of the spread of a quantum state over all possible orthogonal bases. This study is situated in the context of Gaussian quantum states, which are fundamental to both Bosonic and Fermionic systems and can be fully described by a covariance matrix. While the covariance matrix is essential, it is insufficient alone for calculating Krylov complexity due to its lack of relative phase information is shown. The relative covariance matrix can provide an upper bound for Krylov complexity for Gaussian quantum states is suggested. The implications of Krylov complexity for theories proposing complexity as a candidate for holographic duality by computing Krylov complexity for the thermofield double States (TFD) and Dirac field are also explored.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"72 5\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.202400014\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202400014","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Krylov Complexity of Fermionic and Bosonic Gaussian States
The concept of complexity has become pivotal in multiple disciplines, including quantum information, where it serves as an alternative metric for gauging the chaotic evolution of a quantum state. This paper focuses on Krylov complexity, a specialized form of quantum complexity that offers an unambiguous and intrinsically meaningful assessment of the spread of a quantum state over all possible orthogonal bases. This study is situated in the context of Gaussian quantum states, which are fundamental to both Bosonic and Fermionic systems and can be fully described by a covariance matrix. While the covariance matrix is essential, it is insufficient alone for calculating Krylov complexity due to its lack of relative phase information is shown. The relative covariance matrix can provide an upper bound for Krylov complexity for Gaussian quantum states is suggested. The implications of Krylov complexity for theories proposing complexity as a candidate for holographic duality by computing Krylov complexity for the thermofield double States (TFD) and Dirac field are also explored.
期刊介绍:
The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013).
Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.