Alfonso Encinas , Nicolás Henríquez , Daniel Castro , Darío Orts , Diego Kietzmann , Franco Iovino , Paulo Vásquez , Andrés Folguera , Victor Valencia , Facundo Fuentes
{"title":"从弧后延伸到安第斯增长的过渡:对智利中南部(南纬36°)中生代和新生代沉积岩和火山岩的地质年代学、沉积学和构造研究的启示","authors":"Alfonso Encinas , Nicolás Henríquez , Daniel Castro , Darío Orts , Diego Kietzmann , Franco Iovino , Paulo Vásquez , Andrés Folguera , Victor Valencia , Facundo Fuentes","doi":"10.1016/j.gsf.2024.101824","DOIUrl":null,"url":null,"abstract":"<div><p>Many studies propose a significant shift in the tectonic and paleogeographic evolution of the Andes in south-central Chile and Argentina during the Late Cretaceous. It has been proposed that the preceding Jurassic-Early Cretaceous extensional regime that resulted in a low-relief volcanic arc and the backarc Neuquén basin came to an end, giving way to shortening and Andean growth from the Late Cretaceous onward. Nevertheless, there are disagreements regarding the timing and nature of this transition to Andean orogenesis. To address these issues, we conducted geochronologic (U–Pb and <sup>40</sup>Ar/<sup>39</sup>Ar), sedimentologic, and structural studies on Mesozoic-Cenozoic sedimentary and volcanic rocks in the Río Maule area (Principal Cordillera, Chile, 36°S). From our findings and prior analyses, we propose the following tectono-stratigraphic evolution of the region. (1) Marine deposition of the Tithonian-Hauterivian Baños del Flaco Formation took place in an extensional backarc basin. (2) After a ∼ 40 Myr hiatus, fluvial deposits of the Colimapu Formation and volcanic rocks of the Plan de los Yeuques Formation accumulated during the Cenomanian-Danian. Whereas the Colimapu Formation displays evidence of syndepositional shortening, the Plan de los Yeuques Formation exhibits synextensional growth strata. Contrary to other studies, our results suggest that the Chilean part of the Principal Cordillera was largely a zone of active deposition rather than an elevated fold-thrust belt during the Late Cretaceous. We propose that sedimentation occurred within a series of relatively stable intermontane subbasins generated by shortening, followed by extension. (3) After a ∼ 20 Myr hiatus, middle Eocene to early Miocene (Lutetian-Aquitanian) accumulation of a thick succession of andesitic lavas and minor clastic sediments of the Abanico Formation occurred in an intraarc extensional basin. (4) Finally, major shortening and uplift of previously deposited Mesozoic-Cenozoic rocks took place throughout the Neogene. This phase constituted the primary contractional deformation in the Andes of south-central Chile and Argentina. In terms of the transition to early Andean deformation, we propose that structural deformation did not generate a major, regional-scale fold-thrust belt during the late Albian-Santonian. Modest extension, tectonic quiescence, or low-magnitude shortening seem to have dominated during the early to middle Cenozoic.</p></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"15 5","pages":"Article 101824"},"PeriodicalIF":8.5000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674987124000483/pdfft?md5=15bfc7837fbcb3aff4cf1184fa0c132d&pid=1-s2.0-S1674987124000483-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The transition from backarc extension to Andean growth: Insights from geochronologic, sedimentologic, and structural studies of Mesozoic and Cenozoic sedimentary and volcanic rocks in south-central Chile (36°S)\",\"authors\":\"Alfonso Encinas , Nicolás Henríquez , Daniel Castro , Darío Orts , Diego Kietzmann , Franco Iovino , Paulo Vásquez , Andrés Folguera , Victor Valencia , Facundo Fuentes\",\"doi\":\"10.1016/j.gsf.2024.101824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many studies propose a significant shift in the tectonic and paleogeographic evolution of the Andes in south-central Chile and Argentina during the Late Cretaceous. It has been proposed that the preceding Jurassic-Early Cretaceous extensional regime that resulted in a low-relief volcanic arc and the backarc Neuquén basin came to an end, giving way to shortening and Andean growth from the Late Cretaceous onward. Nevertheless, there are disagreements regarding the timing and nature of this transition to Andean orogenesis. To address these issues, we conducted geochronologic (U–Pb and <sup>40</sup>Ar/<sup>39</sup>Ar), sedimentologic, and structural studies on Mesozoic-Cenozoic sedimentary and volcanic rocks in the Río Maule area (Principal Cordillera, Chile, 36°S). From our findings and prior analyses, we propose the following tectono-stratigraphic evolution of the region. (1) Marine deposition of the Tithonian-Hauterivian Baños del Flaco Formation took place in an extensional backarc basin. (2) After a ∼ 40 Myr hiatus, fluvial deposits of the Colimapu Formation and volcanic rocks of the Plan de los Yeuques Formation accumulated during the Cenomanian-Danian. Whereas the Colimapu Formation displays evidence of syndepositional shortening, the Plan de los Yeuques Formation exhibits synextensional growth strata. Contrary to other studies, our results suggest that the Chilean part of the Principal Cordillera was largely a zone of active deposition rather than an elevated fold-thrust belt during the Late Cretaceous. We propose that sedimentation occurred within a series of relatively stable intermontane subbasins generated by shortening, followed by extension. (3) After a ∼ 20 Myr hiatus, middle Eocene to early Miocene (Lutetian-Aquitanian) accumulation of a thick succession of andesitic lavas and minor clastic sediments of the Abanico Formation occurred in an intraarc extensional basin. (4) Finally, major shortening and uplift of previously deposited Mesozoic-Cenozoic rocks took place throughout the Neogene. This phase constituted the primary contractional deformation in the Andes of south-central Chile and Argentina. In terms of the transition to early Andean deformation, we propose that structural deformation did not generate a major, regional-scale fold-thrust belt during the late Albian-Santonian. Modest extension, tectonic quiescence, or low-magnitude shortening seem to have dominated during the early to middle Cenozoic.</p></div>\",\"PeriodicalId\":12711,\"journal\":{\"name\":\"Geoscience frontiers\",\"volume\":\"15 5\",\"pages\":\"Article 101824\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674987124000483/pdfft?md5=15bfc7837fbcb3aff4cf1184fa0c132d&pid=1-s2.0-S1674987124000483-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience frontiers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674987124000483\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987124000483","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The transition from backarc extension to Andean growth: Insights from geochronologic, sedimentologic, and structural studies of Mesozoic and Cenozoic sedimentary and volcanic rocks in south-central Chile (36°S)
Many studies propose a significant shift in the tectonic and paleogeographic evolution of the Andes in south-central Chile and Argentina during the Late Cretaceous. It has been proposed that the preceding Jurassic-Early Cretaceous extensional regime that resulted in a low-relief volcanic arc and the backarc Neuquén basin came to an end, giving way to shortening and Andean growth from the Late Cretaceous onward. Nevertheless, there are disagreements regarding the timing and nature of this transition to Andean orogenesis. To address these issues, we conducted geochronologic (U–Pb and 40Ar/39Ar), sedimentologic, and structural studies on Mesozoic-Cenozoic sedimentary and volcanic rocks in the Río Maule area (Principal Cordillera, Chile, 36°S). From our findings and prior analyses, we propose the following tectono-stratigraphic evolution of the region. (1) Marine deposition of the Tithonian-Hauterivian Baños del Flaco Formation took place in an extensional backarc basin. (2) After a ∼ 40 Myr hiatus, fluvial deposits of the Colimapu Formation and volcanic rocks of the Plan de los Yeuques Formation accumulated during the Cenomanian-Danian. Whereas the Colimapu Formation displays evidence of syndepositional shortening, the Plan de los Yeuques Formation exhibits synextensional growth strata. Contrary to other studies, our results suggest that the Chilean part of the Principal Cordillera was largely a zone of active deposition rather than an elevated fold-thrust belt during the Late Cretaceous. We propose that sedimentation occurred within a series of relatively stable intermontane subbasins generated by shortening, followed by extension. (3) After a ∼ 20 Myr hiatus, middle Eocene to early Miocene (Lutetian-Aquitanian) accumulation of a thick succession of andesitic lavas and minor clastic sediments of the Abanico Formation occurred in an intraarc extensional basin. (4) Finally, major shortening and uplift of previously deposited Mesozoic-Cenozoic rocks took place throughout the Neogene. This phase constituted the primary contractional deformation in the Andes of south-central Chile and Argentina. In terms of the transition to early Andean deformation, we propose that structural deformation did not generate a major, regional-scale fold-thrust belt during the late Albian-Santonian. Modest extension, tectonic quiescence, or low-magnitude shortening seem to have dominated during the early to middle Cenozoic.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.