结合鹰嘴豆的细胞外基质蛋白质组和磷酸蛋白质组以及荟萃分析,揭示植物中新的蛋白质形式和支系特异性壁相关事件的进化意义

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Kanika Narula, Arunima Sinha, Pooja Choudhary, Sudip Ghosh, Eman Elagamey, Archana Sharma, Atreyee Sengupta, Niranjan Chakraborty, Subhra Chakraborty
{"title":"结合鹰嘴豆的细胞外基质蛋白质组和磷酸蛋白质组以及荟萃分析,揭示植物中新的蛋白质形式和支系特异性壁相关事件的进化意义","authors":"Kanika Narula, Arunima Sinha, Pooja Choudhary, Sudip Ghosh, Eman Elagamey, Archana Sharma, Atreyee Sengupta, Niranjan Chakraborty, Subhra Chakraborty","doi":"10.1002/pld3.572","DOIUrl":null,"url":null,"abstract":"Extracellular matrix (ECM) plays central roles in cell architecture, innate defense and cell wall integrity (CWI) signaling. During transition to multicellularity, modular domain structures of ECM proteins and proteoforms have evolved due to continuous adaptation across taxonomic clades under different ecological niche. Although this incredible diversity has to some extent been investigated at protein level, extracellular phosphorylation events and molecular evolution of ECM proteoform families remains unexplored. We developed matrisome proteoform atlas in a grain legume, chickpea and performed meta-analyses of 74 plant matrisomes. MS/MS analysis identified 1,424 proteins and 315 phosphoproteins involved in diverse functions. Cross-species ECM protein network identified proteoforms associated with CWI maintenance system. Phylogenetic characterization of eighteen matrix protein families highlighted the role of taxon-specific paralogs and orthologs. Novel information was acquired on gene expansion and loss, co-divergence, sub functionalization and neofunctionalization during evolution. Modular networks of matrix protein families and hub proteins showed higher diversity across taxonomic clades than among organs. Furthermore, protein families differ in nonsynonymous to synonymous substitution rates. Our study pointed towards the matrix proteoform functionality, sequence divergence variation, interactions between wall remodelers and molecular evolution using a phylogenetic framework. This is the first report on comprehensive matrisome proteoform network illustrating presence of CWI signaling proteins in land plants.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining extracellular matrix proteome and phosphoproteome of chickpea and meta-analysis reveal novel proteoforms and evolutionary significance of clade-specific wall-associated events in plant\",\"authors\":\"Kanika Narula, Arunima Sinha, Pooja Choudhary, Sudip Ghosh, Eman Elagamey, Archana Sharma, Atreyee Sengupta, Niranjan Chakraborty, Subhra Chakraborty\",\"doi\":\"10.1002/pld3.572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracellular matrix (ECM) plays central roles in cell architecture, innate defense and cell wall integrity (CWI) signaling. During transition to multicellularity, modular domain structures of ECM proteins and proteoforms have evolved due to continuous adaptation across taxonomic clades under different ecological niche. Although this incredible diversity has to some extent been investigated at protein level, extracellular phosphorylation events and molecular evolution of ECM proteoform families remains unexplored. We developed matrisome proteoform atlas in a grain legume, chickpea and performed meta-analyses of 74 plant matrisomes. MS/MS analysis identified 1,424 proteins and 315 phosphoproteins involved in diverse functions. Cross-species ECM protein network identified proteoforms associated with CWI maintenance system. Phylogenetic characterization of eighteen matrix protein families highlighted the role of taxon-specific paralogs and orthologs. Novel information was acquired on gene expansion and loss, co-divergence, sub functionalization and neofunctionalization during evolution. Modular networks of matrix protein families and hub proteins showed higher diversity across taxonomic clades than among organs. Furthermore, protein families differ in nonsynonymous to synonymous substitution rates. Our study pointed towards the matrix proteoform functionality, sequence divergence variation, interactions between wall remodelers and molecular evolution using a phylogenetic framework. This is the first report on comprehensive matrisome proteoform network illustrating presence of CWI signaling proteins in land plants.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

细胞外基质(ECM)在细胞结构、先天防御和细胞壁完整性(CWI)信号传导中发挥着核心作用。在向多细胞过渡的过程中,ECM 蛋白的模块化结构域和蛋白形式在不同生态位的分类支系中不断适应进化。尽管在蛋白质水平上对这种令人难以置信的多样性进行了一定程度的研究,但细胞外磷酸化事件和 ECM 蛋白形态家族的分子进化仍未得到探索。我们开发了谷类豆科植物鹰嘴豆的基质组蛋白形态图谱,并对 74 种植物基质组进行了元分析。MS/MS 分析确定了 1,424 种蛋白质和 315 种磷蛋白,它们涉及不同的功能。跨物种 ECM 蛋白网络确定了与 CWI 维护系统相关的蛋白形式。18 个基质蛋白家族的系统发育特征突显了类群特异性旁系亲属和直系亲属的作用。在进化过程中,获得了有关基因扩增和丢失、共分化、亚功能化和新功能化的新信息。基质蛋白家族和枢纽蛋白的模块化网络在不同分类支系之间显示出比器官之间更高的多样性。此外,蛋白质家族的非同义替换率与同义替换率也有所不同。我们的研究利用系统发生学框架指出了基质蛋白的功能、序列差异变化、壁重塑因子之间的相互作用以及分子进化。这是首次报道全面的基质蛋白形式网络,说明了陆生植物中 CWI 信号蛋白的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining extracellular matrix proteome and phosphoproteome of chickpea and meta-analysis reveal novel proteoforms and evolutionary significance of clade-specific wall-associated events in plant
Extracellular matrix (ECM) plays central roles in cell architecture, innate defense and cell wall integrity (CWI) signaling. During transition to multicellularity, modular domain structures of ECM proteins and proteoforms have evolved due to continuous adaptation across taxonomic clades under different ecological niche. Although this incredible diversity has to some extent been investigated at protein level, extracellular phosphorylation events and molecular evolution of ECM proteoform families remains unexplored. We developed matrisome proteoform atlas in a grain legume, chickpea and performed meta-analyses of 74 plant matrisomes. MS/MS analysis identified 1,424 proteins and 315 phosphoproteins involved in diverse functions. Cross-species ECM protein network identified proteoforms associated with CWI maintenance system. Phylogenetic characterization of eighteen matrix protein families highlighted the role of taxon-specific paralogs and orthologs. Novel information was acquired on gene expansion and loss, co-divergence, sub functionalization and neofunctionalization during evolution. Modular networks of matrix protein families and hub proteins showed higher diversity across taxonomic clades than among organs. Furthermore, protein families differ in nonsynonymous to synonymous substitution rates. Our study pointed towards the matrix proteoform functionality, sequence divergence variation, interactions between wall remodelers and molecular evolution using a phylogenetic framework. This is the first report on comprehensive matrisome proteoform network illustrating presence of CWI signaling proteins in land plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信