基于神经网络的重获图像识别算法

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Changming Liu, Yanjun Sun, Lin Deng, Yan Sun
{"title":"基于神经网络的重获图像识别算法","authors":"Changming Liu, Yanjun Sun, Lin Deng, Yan Sun","doi":"10.1142/s0218001423500362","DOIUrl":null,"url":null,"abstract":"<p>With the improvement of digital image display technology, the “secondary imaging” caused by digital cameras is also gradually popularized, and the quality of the recaptured image formed by this imaging is also getting higher and higher, and this kind of high-quality fake image has caused great threat to digital images security. We propose a neural network-based recaptured image identification algorithm and use the difference between two types of images to build the identification algorithm in the frequency domain. The algorithm uses filtering to obtain the feature images which are the high-frequency and low-frequency filtering images, in order to further distinguish the image differences, the direction of the filtered image obtained from high-frequency images, each direction of the filtered image contains high-frequency information at different angles, and the low-frequency image is downsampled. At the same time, the low-frequency image is downsampled to obtain a multi-scale filtered image. The algorithm extracts the features from previous images as the feature values for classification, and finally uses neural networks for classification to obtain the classification results, and these prove that the algorithm presented is able to differentiate the recaptured images effectively in this paper.</p>","PeriodicalId":54949,"journal":{"name":"International Journal of Pattern Recognition and Artificial Intelligence","volume":"143 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network-Based Algorithm for Identification of Recaptured Images\",\"authors\":\"Changming Liu, Yanjun Sun, Lin Deng, Yan Sun\",\"doi\":\"10.1142/s0218001423500362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the improvement of digital image display technology, the “secondary imaging” caused by digital cameras is also gradually popularized, and the quality of the recaptured image formed by this imaging is also getting higher and higher, and this kind of high-quality fake image has caused great threat to digital images security. We propose a neural network-based recaptured image identification algorithm and use the difference between two types of images to build the identification algorithm in the frequency domain. The algorithm uses filtering to obtain the feature images which are the high-frequency and low-frequency filtering images, in order to further distinguish the image differences, the direction of the filtered image obtained from high-frequency images, each direction of the filtered image contains high-frequency information at different angles, and the low-frequency image is downsampled. At the same time, the low-frequency image is downsampled to obtain a multi-scale filtered image. The algorithm extracts the features from previous images as the feature values for classification, and finally uses neural networks for classification to obtain the classification results, and these prove that the algorithm presented is able to differentiate the recaptured images effectively in this paper.</p>\",\"PeriodicalId\":54949,\"journal\":{\"name\":\"International Journal of Pattern Recognition and Artificial Intelligence\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pattern Recognition and Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218001423500362\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pattern Recognition and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0218001423500362","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着数字图像显示技术的提高,数码相机造成的 "二次成像 "也逐渐普及,这种成像形成的再捕获图像的质量也越来越高,这种高质量的伪造图像对数字图像安全造成了极大的威胁。我们提出了一种基于神经网络的再捕获图像识别算法,利用两类图像的差异建立频域识别算法。该算法利用滤波得到特征图像,即高频滤波图像和低频滤波图像,为了进一步区分图像差异,从高频图像中得到滤波图像的方向,滤波图像的每个方向包含不同角度的高频信息,并对低频图像进行降采样。同时,对低频图像进行降采样,得到多尺度滤波图像。该算法从之前的图像中提取特征作为分类的特征值,最后利用神经网络进行分类,得到分类结果,这些都证明本文提出的算法能够有效地区分重新捕获的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network-Based Algorithm for Identification of Recaptured Images

With the improvement of digital image display technology, the “secondary imaging” caused by digital cameras is also gradually popularized, and the quality of the recaptured image formed by this imaging is also getting higher and higher, and this kind of high-quality fake image has caused great threat to digital images security. We propose a neural network-based recaptured image identification algorithm and use the difference between two types of images to build the identification algorithm in the frequency domain. The algorithm uses filtering to obtain the feature images which are the high-frequency and low-frequency filtering images, in order to further distinguish the image differences, the direction of the filtered image obtained from high-frequency images, each direction of the filtered image contains high-frequency information at different angles, and the low-frequency image is downsampled. At the same time, the low-frequency image is downsampled to obtain a multi-scale filtered image. The algorithm extracts the features from previous images as the feature values for classification, and finally uses neural networks for classification to obtain the classification results, and these prove that the algorithm presented is able to differentiate the recaptured images effectively in this paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
13.30%
发文量
201
审稿时长
15.8 months
期刊介绍: The International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI) welcomes both theory-oriented and innovative applications articles on new developments and is of interest to both researchers in academia and industry. The current scope of this journal includes: • Pattern Recognition • Machine Learning • Deep Learning • Document Analysis • Image Processing • Signal Processing • Computer Vision • Biometrics • Biomedical Image Analysis • Artificial Intelligence In addition to regular papers describing original research work, survey articles on timely and important research topics are highly welcome. Special issues with focused topics within the scope of this journal are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信