Fangfang Zhang, Yuye Zhang, Paula Casanovas, Jessica Schattschneider, Seumas P. Walker, Bing Xue, Mengjie Zhang, Jane E. Symonds
{"title":"通过遗传编程的进化机器学习预测帝王鲑的健康状况","authors":"Fangfang Zhang, Yuye Zhang, Paula Casanovas, Jessica Schattschneider, Seumas P. Walker, Bing Xue, Mengjie Zhang, Jane E. Symonds","doi":"10.1080/03036758.2024.2329228","DOIUrl":null,"url":null,"abstract":"King (Chinook) salmon is the only salmon species farmed in Aotearoa New Zealand and accounts for over half of the world's production of king salmon. Determining the health status of king salmon eff...","PeriodicalId":49984,"journal":{"name":"Journal of the Royal Society of New Zealand","volume":"22 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Health prediction for king salmon via evolutionary machine learning with genetic programming\",\"authors\":\"Fangfang Zhang, Yuye Zhang, Paula Casanovas, Jessica Schattschneider, Seumas P. Walker, Bing Xue, Mengjie Zhang, Jane E. Symonds\",\"doi\":\"10.1080/03036758.2024.2329228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"King (Chinook) salmon is the only salmon species farmed in Aotearoa New Zealand and accounts for over half of the world's production of king salmon. Determining the health status of king salmon eff...\",\"PeriodicalId\":49984,\"journal\":{\"name\":\"Journal of the Royal Society of New Zealand\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Society of New Zealand\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1080/03036758.2024.2329228\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Society of New Zealand","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1080/03036758.2024.2329228","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Health prediction for king salmon via evolutionary machine learning with genetic programming
King (Chinook) salmon is the only salmon species farmed in Aotearoa New Zealand and accounts for over half of the world's production of king salmon. Determining the health status of king salmon eff...
期刊介绍:
Aims: The Journal of the Royal Society of New Zealand reflects the role of Royal Society Te Aparangi in fostering research and debate across natural sciences, social sciences, and the humanities in New Zealand/Aotearoa and the surrounding Pacific. Research published in Journal of the Royal Society of New Zealand advances scientific knowledge, informs government policy, public awareness and broader society, and is read by researchers worldwide.