壬二酸/壬二酸诱导1介导的系统抵抗中的脂质过氧化和应激诱导信号分子:信号的启动和传播

IF 3.4 3区 生物学 Q1 PLANT SCIENCES
{"title":"壬二酸/壬二酸诱导1介导的系统抵抗中的脂质过氧化和应激诱导信号分子:信号的启动和传播","authors":"","doi":"10.1007/s12298-024-01420-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Systemic acquired resistance protects plants against a broad spectrum of secondary infections by pathogens. A crucial compound involved in the systemic spread of the threat information after primary pathogen infection is the C9 oxylipin azelaic acid (AZA), a breakdown product of unsaturated C18 fatty acids. AZA is generated during lipid peroxidation in the plastids and accumulates in response to various abiotic and biotic stresses. AZA stimulates the expression of <em>AZELAIC ACID INDUCED1</em> (<em>AZI1</em>), and a pool of AZI1 accumulates in the plastid envelope in association with AZA. AZA and AZI1 utilize the symplastic pathway to travel through the plasmodesmata to neighbouring cells to induce systemic stress resistance responses in distal tissues. Here, we describe the synthesis, travel and function of AZA and AZI1 and discuss open questions of signal initiation and propagation.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid peroxidation and stress-induced signalling molecules in systemic resistance mediated by azelaic acid/AZELAIC ACID INDUCED1: signal initiation and propagation\",\"authors\":\"\",\"doi\":\"10.1007/s12298-024-01420-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Systemic acquired resistance protects plants against a broad spectrum of secondary infections by pathogens. A crucial compound involved in the systemic spread of the threat information after primary pathogen infection is the C9 oxylipin azelaic acid (AZA), a breakdown product of unsaturated C18 fatty acids. AZA is generated during lipid peroxidation in the plastids and accumulates in response to various abiotic and biotic stresses. AZA stimulates the expression of <em>AZELAIC ACID INDUCED1</em> (<em>AZI1</em>), and a pool of AZI1 accumulates in the plastid envelope in association with AZA. AZA and AZI1 utilize the symplastic pathway to travel through the plasmodesmata to neighbouring cells to induce systemic stress resistance responses in distal tissues. Here, we describe the synthesis, travel and function of AZA and AZI1 and discuss open questions of signal initiation and propagation.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-024-01420-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01420-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 系统获得性抗性可保护植物免受病原体的广泛二次感染。C9 氧脂素壬二酸(AZA)是不饱和 C18 脂肪酸的分解产物,它是原生病原体感染后参与威胁信息系统性传播的一种重要化合物。AZA 在质体的脂质过氧化过程中生成,并在各种非生物和生物胁迫下积累。AZA 可刺激 AZELAIC ACID INDUCED1(AZI1)的表达,AZI1 池与 AZA 一起在质体包膜中积累。AZA 和 AZI1 利用交联途径通过质膜到达邻近细胞,诱导远端组织产生系统抗逆反应。在这里,我们描述了 AZA 和 AZI1 的合成、传播和功能,并讨论了信号启动和传播的未决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipid peroxidation and stress-induced signalling molecules in systemic resistance mediated by azelaic acid/AZELAIC ACID INDUCED1: signal initiation and propagation

Abstract

Systemic acquired resistance protects plants against a broad spectrum of secondary infections by pathogens. A crucial compound involved in the systemic spread of the threat information after primary pathogen infection is the C9 oxylipin azelaic acid (AZA), a breakdown product of unsaturated C18 fatty acids. AZA is generated during lipid peroxidation in the plastids and accumulates in response to various abiotic and biotic stresses. AZA stimulates the expression of AZELAIC ACID INDUCED1 (AZI1), and a pool of AZI1 accumulates in the plastid envelope in association with AZA. AZA and AZI1 utilize the symplastic pathway to travel through the plasmodesmata to neighbouring cells to induce systemic stress resistance responses in distal tissues. Here, we describe the synthesis, travel and function of AZA and AZI1 and discuss open questions of signal initiation and propagation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
126
期刊介绍: Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信