燃料电池催化剂层的活化方法和潜在性能提升机制

IF 42.9 Q1 ELECTROCHEMISTRY
Miao Ma, Lixiao Shen, Zigang Zhao, Pan Guo, Jing Liu, Bin Xu, Ziyu Zhang, Yunlong Zhang, Lei Zhao, Zhenbo Wang
{"title":"燃料电池催化剂层的活化方法和潜在性能提升机制","authors":"Miao Ma, Lixiao Shen, Zigang Zhao, Pan Guo, Jing Liu, Bin Xu, Ziyu Zhang, Yunlong Zhang, Lei Zhao, Zhenbo Wang","doi":"10.1016/j.esci.2024.100254","DOIUrl":null,"url":null,"abstract":"Proton exchange membrane fuel cells (PEMFCs) have been widely acknowledged as a significant advancement in achieving sustainable energy conversion. However, the activation of newly established Pt-ionomer interfaces in the catalyst layer of PEMFCs can be a time-consuming and costly process to ensure proper coupling and performance. In order to gain valuable insights into this crucial activation process, we have conducted a comprehensive analysis and comparison of the commonly employed on-line (such as current or voltage control activation, short-circuiting activation, and air interruption activation) and off-line (including boiling or steaming, acid-treatment, and ultrasonic-treatment) activation methods. Our findings shed light on the underlying mechanisms that contribute to enhanced performance within the catalyst layer, such as the reduction of Pt oxides and hydroxides, improved proton transport, and the reduction of “dead” regions. Moreover, this review emphasizes the significant challenges and future opportunities that lie in further enhancing the performance within the catalyst layer through the activation process.","PeriodicalId":100489,"journal":{"name":"eScience","volume":"22 1","pages":""},"PeriodicalIF":42.9000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation methods and underlying performance boosting mechanisms within fuel cell catalyst layer\",\"authors\":\"Miao Ma, Lixiao Shen, Zigang Zhao, Pan Guo, Jing Liu, Bin Xu, Ziyu Zhang, Yunlong Zhang, Lei Zhao, Zhenbo Wang\",\"doi\":\"10.1016/j.esci.2024.100254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proton exchange membrane fuel cells (PEMFCs) have been widely acknowledged as a significant advancement in achieving sustainable energy conversion. However, the activation of newly established Pt-ionomer interfaces in the catalyst layer of PEMFCs can be a time-consuming and costly process to ensure proper coupling and performance. In order to gain valuable insights into this crucial activation process, we have conducted a comprehensive analysis and comparison of the commonly employed on-line (such as current or voltage control activation, short-circuiting activation, and air interruption activation) and off-line (including boiling or steaming, acid-treatment, and ultrasonic-treatment) activation methods. Our findings shed light on the underlying mechanisms that contribute to enhanced performance within the catalyst layer, such as the reduction of Pt oxides and hydroxides, improved proton transport, and the reduction of “dead” regions. Moreover, this review emphasizes the significant challenges and future opportunities that lie in further enhancing the performance within the catalyst layer through the activation process.\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1016/j.esci.2024.100254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1016/j.esci.2024.100254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜燃料电池(PEMFC)已被广泛认为是实现可持续能源转换的一大进步。然而,为了确保适当的耦合和性能,PEMFC 催化剂层中新建立的铂-离子界面的活化可能是一个耗时且成本高昂的过程。为了深入了解这一关键的活化过程,我们对常用的在线(如电流或电压控制活化、短路活化和空气中断活化)和离线(包括沸腾或蒸煮、酸处理和超声波处理)活化方法进行了全面分析和比较。我们的研究结果阐明了提高催化剂层性能的基本机制,如减少铂氧化物和氢氧化物、改善质子传输和减少 "死区"。此外,本综述还强调了通过活化过程进一步提高催化剂层性能所面临的重大挑战和未来机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activation methods and underlying performance boosting mechanisms within fuel cell catalyst layer
Proton exchange membrane fuel cells (PEMFCs) have been widely acknowledged as a significant advancement in achieving sustainable energy conversion. However, the activation of newly established Pt-ionomer interfaces in the catalyst layer of PEMFCs can be a time-consuming and costly process to ensure proper coupling and performance. In order to gain valuable insights into this crucial activation process, we have conducted a comprehensive analysis and comparison of the commonly employed on-line (such as current or voltage control activation, short-circuiting activation, and air interruption activation) and off-line (including boiling or steaming, acid-treatment, and ultrasonic-treatment) activation methods. Our findings shed light on the underlying mechanisms that contribute to enhanced performance within the catalyst layer, such as the reduction of Pt oxides and hydroxides, improved proton transport, and the reduction of “dead” regions. Moreover, this review emphasizes the significant challenges and future opportunities that lie in further enhancing the performance within the catalyst layer through the activation process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信