将连通性纳入海洋保护区设计:菲律宾和台湾的案例研究

IF 4 2区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Monique Mercado-Vicentillo , Pierre-Alexandre Château , Yang-Chi Chang , Nien-Tsu Alfred Hu
{"title":"将连通性纳入海洋保护区设计:菲律宾和台湾的案例研究","authors":"Monique Mercado-Vicentillo ,&nbsp;Pierre-Alexandre Château ,&nbsp;Yang-Chi Chang ,&nbsp;Nien-Tsu Alfred Hu","doi":"10.1016/j.pecon.2024.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>As threats to the marine environment are increasing over time, the United Nations aims to protect 30% of the ocean by 2030 as one of its sustainable development goals. In order to maximize the ecological benefit for the ocean, a coordinated global effort in marine protected area (MPA) planning is necessary. In this context, ecological connectivity between areas should be considered. Connectivity has been integrated in several previous MPA designs however this usually requires exhaustive larval information (which may not be readily available) and/or complex ocean current simulations (which may be arduous at the transnational scale). In this study, we developed a simple passive drift model of larval dispersal as an alternative approach to integrate connectivity in MPA design. By doing so, we determined larvae source and sink areas between the Philippines and Taiwan, and recorded the time it takes for the virtual larvae from the Philippines to reach the sink zones in Taiwan. We used integer linear programming to identify areas best suited for protection in the Philippines, and found that Batanes, Philippines seeds Green Island and Orchid Island in Taiwan. Travel time of the virtual larvae was estimated to range between 7 and 12 days. We also demonstrate that the integrated approach to maximize habitat area and minimize larvae travel time yields promising results for marine conservation. This approach could be instrumental in marine conservation planning, especially in the formulation of a transboundary MPA network.</p></div>","PeriodicalId":56034,"journal":{"name":"Perspectives in Ecology and Conservation","volume":"22 2","pages":"Pages 146-155"},"PeriodicalIF":4.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2530064424000051/pdfft?md5=a6d0c813e29f419d7cdaf9252f8c28fb&pid=1-s2.0-S2530064424000051-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrating connectivity in marine protected area design: A case study between the Philippines and Taiwan\",\"authors\":\"Monique Mercado-Vicentillo ,&nbsp;Pierre-Alexandre Château ,&nbsp;Yang-Chi Chang ,&nbsp;Nien-Tsu Alfred Hu\",\"doi\":\"10.1016/j.pecon.2024.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As threats to the marine environment are increasing over time, the United Nations aims to protect 30% of the ocean by 2030 as one of its sustainable development goals. In order to maximize the ecological benefit for the ocean, a coordinated global effort in marine protected area (MPA) planning is necessary. In this context, ecological connectivity between areas should be considered. Connectivity has been integrated in several previous MPA designs however this usually requires exhaustive larval information (which may not be readily available) and/or complex ocean current simulations (which may be arduous at the transnational scale). In this study, we developed a simple passive drift model of larval dispersal as an alternative approach to integrate connectivity in MPA design. By doing so, we determined larvae source and sink areas between the Philippines and Taiwan, and recorded the time it takes for the virtual larvae from the Philippines to reach the sink zones in Taiwan. We used integer linear programming to identify areas best suited for protection in the Philippines, and found that Batanes, Philippines seeds Green Island and Orchid Island in Taiwan. Travel time of the virtual larvae was estimated to range between 7 and 12 days. We also demonstrate that the integrated approach to maximize habitat area and minimize larvae travel time yields promising results for marine conservation. This approach could be instrumental in marine conservation planning, especially in the formulation of a transboundary MPA network.</p></div>\",\"PeriodicalId\":56034,\"journal\":{\"name\":\"Perspectives in Ecology and Conservation\",\"volume\":\"22 2\",\"pages\":\"Pages 146-155\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2530064424000051/pdfft?md5=a6d0c813e29f419d7cdaf9252f8c28fb&pid=1-s2.0-S2530064424000051-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Perspectives in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2530064424000051\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspectives in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2530064424000051","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

[显示省略]
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrating connectivity in marine protected area design: A case study between the Philippines and Taiwan

Integrating connectivity in marine protected area design: A case study between the Philippines and Taiwan

As threats to the marine environment are increasing over time, the United Nations aims to protect 30% of the ocean by 2030 as one of its sustainable development goals. In order to maximize the ecological benefit for the ocean, a coordinated global effort in marine protected area (MPA) planning is necessary. In this context, ecological connectivity between areas should be considered. Connectivity has been integrated in several previous MPA designs however this usually requires exhaustive larval information (which may not be readily available) and/or complex ocean current simulations (which may be arduous at the transnational scale). In this study, we developed a simple passive drift model of larval dispersal as an alternative approach to integrate connectivity in MPA design. By doing so, we determined larvae source and sink areas between the Philippines and Taiwan, and recorded the time it takes for the virtual larvae from the Philippines to reach the sink zones in Taiwan. We used integer linear programming to identify areas best suited for protection in the Philippines, and found that Batanes, Philippines seeds Green Island and Orchid Island in Taiwan. Travel time of the virtual larvae was estimated to range between 7 and 12 days. We also demonstrate that the integrated approach to maximize habitat area and minimize larvae travel time yields promising results for marine conservation. This approach could be instrumental in marine conservation planning, especially in the formulation of a transboundary MPA network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Perspectives in Ecology and Conservation
Perspectives in Ecology and Conservation Environmental Science-Nature and Landscape Conservation
CiteScore
7.80
自引率
4.30%
发文量
46
审稿时长
59 days
期刊介绍: Perspectives in Ecology and Conservation (PECON) is a scientific journal devoted to improving theoretical and conceptual aspects of conservation science. It has the main purpose of communicating new research and advances to different actors of society, including researchers, conservationists, practitioners, and policymakers. Perspectives in Ecology and Conservation publishes original papers on biodiversity conservation and restoration, on the main drivers affecting native ecosystems, and on nature’s benefits to people and human wellbeing. This scope includes studies on biodiversity patterns, the effects of habitat loss, fragmentation, biological invasion and climate change on biodiversity, conservation genetics, spatial conservation planning, ecosystem management, ecosystem services, sustainability and resilience of socio-ecological systems, conservation policy, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信