{"title":"欧氏二维环上谱投影的 L2 到 Lp 边界","authors":"Ciprian Demeter, Pierre Germain","doi":"10.1017/s0013091524000099","DOIUrl":null,"url":null,"abstract":"We consider spectral projectors associated to the Euclidean Laplacian on the two-dimensional torus, in the case where the spectral window is narrow. Bounds for their <jats:italic>L</jats:italic><jats:sup>2</jats:sup> to <jats:italic>L<jats:sup>p</jats:sup></jats:italic> operator norm are derived, extending the classical result of Sogge; a new question on the convolution kernel of the projector is introduced. The methods employed include <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000099_inline1.png\" /> <jats:tex-math>$\\ell^2$</jats:tex-math> </jats:alternatives> </jats:inline-formula> decoupling, small cap decoupling and estimates of exponential sums.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L2 to Lp bounds for spectral projectors on the Euclidean two-dimensional torus\",\"authors\":\"Ciprian Demeter, Pierre Germain\",\"doi\":\"10.1017/s0013091524000099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider spectral projectors associated to the Euclidean Laplacian on the two-dimensional torus, in the case where the spectral window is narrow. Bounds for their <jats:italic>L</jats:italic><jats:sup>2</jats:sup> to <jats:italic>L<jats:sup>p</jats:sup></jats:italic> operator norm are derived, extending the classical result of Sogge; a new question on the convolution kernel of the projector is introduced. The methods employed include <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000099_inline1.png\\\" /> <jats:tex-math>$\\\\ell^2$</jats:tex-math> </jats:alternatives> </jats:inline-formula> decoupling, small cap decoupling and estimates of exponential sums.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
L2 to Lp bounds for spectral projectors on the Euclidean two-dimensional torus
We consider spectral projectors associated to the Euclidean Laplacian on the two-dimensional torus, in the case where the spectral window is narrow. Bounds for their L2 to Lp operator norm are derived, extending the classical result of Sogge; a new question on the convolution kernel of the projector is introduced. The methods employed include $\ell^2$ decoupling, small cap decoupling and estimates of exponential sums.