关于超立方体的图兰数

IF 1.2 2区 数学 Q1 MATHEMATICS
Oliver Janzer, Benny Sudakov
{"title":"关于超立方体的图兰数","authors":"Oliver Janzer, Benny Sudakov","doi":"10.1017/fms.2024.27","DOIUrl":null,"url":null,"abstract":"In 1964, Erdős proposed the problem of estimating the Turán number of the <jats:italic>d</jats:italic>-dimensional hypercube <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline1.png\" /> <jats:tex-math> $Q_d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Since <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline2.png\" /> <jats:tex-math> $Q_d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a bipartite graph with maximum degree <jats:italic>d</jats:italic>, it follows from results of Füredi and Alon, Krivelevich, Sudakov that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline3.png\" /> <jats:tex-math> $\\mathrm {ex}(n,Q_d)=O_d(n^{2-1/d})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. A recent general result of Sudakov and Tomon implies the slightly stronger bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline4.png\" /> <jats:tex-math> $\\mathrm {ex}(n,Q_d)=o(n^{2-1/d})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We obtain the first power-improvement for this old problem by showing that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline5.png\" /> <jats:tex-math> $\\mathrm {ex}(n,Q_d)=O_d\\left (n^{2-\\frac {1}{d-1}+\\frac {1}{(d-1)2^{d-1}}}\\right )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This answers a question of Liu. Moreover, our techniques give a power improvement for a larger class of graphs than cubes. We use a similar method to prove that any <jats:italic>n</jats:italic>-vertex, properly edge-coloured graph without a rainbow cycle has at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline6.png\" /> <jats:tex-math> $O(n(\\log n)^2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> edges, improving the previous best bound of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline7.png\" /> <jats:tex-math> $n(\\log n)^{2+o(1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by Tomon. Furthermore, we show that any properly edge-coloured <jats:italic>n</jats:italic>-vertex graph with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline8.png\" /> <jats:tex-math> $\\omega (n\\log n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> edges contains a cycle which is almost rainbow: that is, almost all edges in it have a unique colour. This latter result is tight.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Turán number of the hypercube\",\"authors\":\"Oliver Janzer, Benny Sudakov\",\"doi\":\"10.1017/fms.2024.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1964, Erdős proposed the problem of estimating the Turán number of the <jats:italic>d</jats:italic>-dimensional hypercube <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline1.png\\\" /> <jats:tex-math> $Q_d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Since <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline2.png\\\" /> <jats:tex-math> $Q_d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a bipartite graph with maximum degree <jats:italic>d</jats:italic>, it follows from results of Füredi and Alon, Krivelevich, Sudakov that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline3.png\\\" /> <jats:tex-math> $\\\\mathrm {ex}(n,Q_d)=O_d(n^{2-1/d})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. A recent general result of Sudakov and Tomon implies the slightly stronger bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline4.png\\\" /> <jats:tex-math> $\\\\mathrm {ex}(n,Q_d)=o(n^{2-1/d})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We obtain the first power-improvement for this old problem by showing that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline5.png\\\" /> <jats:tex-math> $\\\\mathrm {ex}(n,Q_d)=O_d\\\\left (n^{2-\\\\frac {1}{d-1}+\\\\frac {1}{(d-1)2^{d-1}}}\\\\right )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This answers a question of Liu. Moreover, our techniques give a power improvement for a larger class of graphs than cubes. We use a similar method to prove that any <jats:italic>n</jats:italic>-vertex, properly edge-coloured graph without a rainbow cycle has at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline6.png\\\" /> <jats:tex-math> $O(n(\\\\log n)^2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> edges, improving the previous best bound of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline7.png\\\" /> <jats:tex-math> $n(\\\\log n)^{2+o(1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by Tomon. Furthermore, we show that any properly edge-coloured <jats:italic>n</jats:italic>-vertex graph with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline8.png\\\" /> <jats:tex-math> $\\\\omega (n\\\\log n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> edges contains a cycle which is almost rainbow: that is, almost all edges in it have a unique colour. This latter result is tight.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.27\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.27","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

1964 年,厄尔多斯提出了估计 d 维超立方体 $Q_d$ 的图兰数问题。由于 $Q_d$ 是最大阶数为 d 的双方形图,根据 Füredi 和 Alon、Krivelevich、Sudakov 的结果,可以得出 $mathrm {ex}(n,Q_d)=O_d(n^{2-1/d})$ 。Sudakov 和 Tomon 最近的一个一般性结果暗示了稍强的约束 $\mathrm {ex}(n,Q_d)=o(n^{2-1/d})$ 。通过证明 $\mathrm {ex}(n,Q_d)=O_d\left (n^{2-\frac {1}{d-1}+\frac {1}{(d-1)2^{d-1}}}\right )$ ,我们得到了这个老问题的第一个幂改进。这回答了刘博士的一个问题。此外,我们的技术对于比立方体更大的图类也有能力改进。我们用类似的方法证明了任何 n 个顶点、适当边缘着色、没有彩虹循环的图最多有 $O(n(\log n)^2)$ 条边,这改进了托蒙之前的最佳边界 $n(\log n)^{2+o(1)}$。此外,我们还证明了任何具有 $\omega (n\log n)$ 边的适当边色 n 顶点图都包含一个几乎是彩虹的循环:也就是说,其中几乎所有的边都有唯一的颜色。后一个结果是严密的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Turán number of the hypercube
In 1964, Erdős proposed the problem of estimating the Turán number of the d-dimensional hypercube $Q_d$ . Since $Q_d$ is a bipartite graph with maximum degree d, it follows from results of Füredi and Alon, Krivelevich, Sudakov that $\mathrm {ex}(n,Q_d)=O_d(n^{2-1/d})$ . A recent general result of Sudakov and Tomon implies the slightly stronger bound $\mathrm {ex}(n,Q_d)=o(n^{2-1/d})$ . We obtain the first power-improvement for this old problem by showing that $\mathrm {ex}(n,Q_d)=O_d\left (n^{2-\frac {1}{d-1}+\frac {1}{(d-1)2^{d-1}}}\right )$ . This answers a question of Liu. Moreover, our techniques give a power improvement for a larger class of graphs than cubes. We use a similar method to prove that any n-vertex, properly edge-coloured graph without a rainbow cycle has at most $O(n(\log n)^2)$ edges, improving the previous best bound of $n(\log n)^{2+o(1)}$ by Tomon. Furthermore, we show that any properly edge-coloured n-vertex graph with $\omega (n\log n)$ edges contains a cycle which is almost rainbow: that is, almost all edges in it have a unique colour. This latter result is tight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信