A. Ballester-Bolinches, R. Esteban-Romero, M. Ferrara, V. Pérez-Calabuig, M. Trombetti
{"title":"无平方阶的有限斜撑和超溶解性","authors":"A. Ballester-Bolinches, R. Esteban-Romero, M. Ferrara, V. Pérez-Calabuig, M. Trombetti","doi":"10.1017/fms.2024.29","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to study <span>supersoluble</span> skew braces, a class of skew braces that encompasses all finite skew braces of square-free order. It turns out that finite supersoluble skew braces have Sylow towers and that in an arbitrary supersoluble skew brace <span>B</span> many relevant skew brace-theoretical properties are easier to identify: For example, a centrally nilpotent ideal of <span>B</span> is <span>B</span>-centrally nilpotent, a fact that simplifies the computational search for the Fitting ideal; also, <span>B</span> has finite multipermutational level if and only if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315044131610-0210:S205050942400029X:S205050942400029X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$(B,+)$</span></span></img></span></span> is nilpotent.</p><p>Given a finite presentation of the structure skew brace <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315044131610-0210:S205050942400029X:S205050942400029X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$G(X,r)$</span></span></img></span></span> associated with a finite nondegenerate solution of the Yang–Baxter equation (YBE), there is an algorithm that decides if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315044131610-0210:S205050942400029X:S205050942400029X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G(X,r)$</span></span></img></span></span> is supersoluble or not. Moreover, supersoluble skew braces are examples of almost polycyclic skew braces, so they give rise to solutions of the YBE on which one can algorithmically work on.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite skew braces of square-free order and supersolubility\",\"authors\":\"A. Ballester-Bolinches, R. Esteban-Romero, M. Ferrara, V. Pérez-Calabuig, M. Trombetti\",\"doi\":\"10.1017/fms.2024.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this paper is to study <span>supersoluble</span> skew braces, a class of skew braces that encompasses all finite skew braces of square-free order. It turns out that finite supersoluble skew braces have Sylow towers and that in an arbitrary supersoluble skew brace <span>B</span> many relevant skew brace-theoretical properties are easier to identify: For example, a centrally nilpotent ideal of <span>B</span> is <span>B</span>-centrally nilpotent, a fact that simplifies the computational search for the Fitting ideal; also, <span>B</span> has finite multipermutational level if and only if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315044131610-0210:S205050942400029X:S205050942400029X_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(B,+)$</span></span></img></span></span> is nilpotent.</p><p>Given a finite presentation of the structure skew brace <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315044131610-0210:S205050942400029X:S205050942400029X_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G(X,r)$</span></span></img></span></span> associated with a finite nondegenerate solution of the Yang–Baxter equation (YBE), there is an algorithm that decides if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315044131610-0210:S205050942400029X:S205050942400029X_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G(X,r)$</span></span></img></span></span> is supersoluble or not. Moreover, supersoluble skew braces are examples of almost polycyclic skew braces, so they give rise to solutions of the YBE on which one can algorithmically work on.</p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.29\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.29","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文旨在研究超可溶性斜撑,这是一类包含所有无平方阶有限斜撑的斜撑。事实证明,有限超可溶性斜撑具有 Sylow 塔,而且在任意超可溶性斜撑 B 中,许多相关的斜撑理论性质更容易识别:例如,B 的中心零能理想是 B 中心零能的,这一事实简化了对 Fitting 理想的计算搜索;另外,当且仅当 $(B,+)$ 是零能的时候,B 具有有限的多变水平。给定与杨-巴克斯特方程(Yang-Baxter equation,YBE)的有限非生成解相关的结构斜撑$G(X,r)$的有限呈现,有一种算法可以决定$G(X,r)$是否是超可溶的。此外,超溶斜括号是几乎多环斜括号的例子,因此它们会产生可以用算法处理的 YBE 解。
Finite skew braces of square-free order and supersolubility
The aim of this paper is to study supersoluble skew braces, a class of skew braces that encompasses all finite skew braces of square-free order. It turns out that finite supersoluble skew braces have Sylow towers and that in an arbitrary supersoluble skew brace B many relevant skew brace-theoretical properties are easier to identify: For example, a centrally nilpotent ideal of B is B-centrally nilpotent, a fact that simplifies the computational search for the Fitting ideal; also, B has finite multipermutational level if and only if $(B,+)$ is nilpotent.
Given a finite presentation of the structure skew brace $G(X,r)$ associated with a finite nondegenerate solution of the Yang–Baxter equation (YBE), there is an algorithm that decides if $G(X,r)$ is supersoluble or not. Moreover, supersoluble skew braces are examples of almost polycyclic skew braces, so they give rise to solutions of the YBE on which one can algorithmically work on.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.