David Carramiñana , Ana M. Bernardos , Juan A. Besada , José R. Casar
{"title":"建设具有抗灾能力的城市:通过数据驱动决策降低风险的混合模拟框架","authors":"David Carramiñana , Ana M. Bernardos , Juan A. Besada , José R. Casar","doi":"10.1016/j.simpat.2024.102924","DOIUrl":null,"url":null,"abstract":"<div><p>Providing a comprehensive view of the city operation and offering useful metrics for decision-making is a well-known challenge for urban risk-analysis systems. Existing systems are, in many cases, generalizations of previous domain specific tools/methodologies that may not cover all urban interdependencies and makes it difficult to have homogeneous indicators. In order to overcome this limitation while seeking for effective support to decision makers, this article introduces a novel hybrid simulation framework for risk mitigation. The framework is built on a proposed city concept that considers the urban space as a Complex Adaptive System composed by interconnected Critical Infrastructures. In this concept, a Social System, which models daily patterns and social interactions of the citizens in the Urban Landscape, drives the CIs demand to configure the full city picture. The framework's hybrid design integrates agent-based and network-based modeling by breaking down city agents into system-dependent subagents, to enable both inter and intra-system interaction simulation, respectively. A layered structure of indicators at different aggregation levels is also developed, to ensure that decisions are not only data-driven but also explainable. Therefore, the proposed simulation framework can serve as a DSS tool that allows the quantitative analysis of the impact of threats at different levels. First, system-level metrics can be used to get a broad view on the city resilience. Then, agent-level metrics back those figures and provide better explainability. On implementation, the proposed framework enables component reusability (for eased coding), simulation federation (enabling the integration of existing system-oriented simulators), discrete simulation in accelerated time (for rapid scenario simulation) and decision-oriented visualization (for informed outputs). The system built under the proposed approach facilitates to simulate various risk mitigation strategies for a scenario under analysis, allowing decision-makers to foresee potential outcomes. A case study has been deployed on a framework prototype to demonstrate how the DSS can be used in real-world situations, specifically combining cyber hazards over health and traffic infrastructures. The proposal aims at pushing the boundaries of urban city simulation towards more real, intelligent, and automated frameworks.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"133 ","pages":"Article 102924"},"PeriodicalIF":3.5000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24000388/pdfft?md5=04ef681b2c9c771225ceb322adfb1cce&pid=1-s2.0-S1569190X24000388-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards resilient cities: A hybrid simulation framework for risk mitigation through data-driven decision making\",\"authors\":\"David Carramiñana , Ana M. Bernardos , Juan A. Besada , José R. Casar\",\"doi\":\"10.1016/j.simpat.2024.102924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Providing a comprehensive view of the city operation and offering useful metrics for decision-making is a well-known challenge for urban risk-analysis systems. Existing systems are, in many cases, generalizations of previous domain specific tools/methodologies that may not cover all urban interdependencies and makes it difficult to have homogeneous indicators. In order to overcome this limitation while seeking for effective support to decision makers, this article introduces a novel hybrid simulation framework for risk mitigation. The framework is built on a proposed city concept that considers the urban space as a Complex Adaptive System composed by interconnected Critical Infrastructures. In this concept, a Social System, which models daily patterns and social interactions of the citizens in the Urban Landscape, drives the CIs demand to configure the full city picture. The framework's hybrid design integrates agent-based and network-based modeling by breaking down city agents into system-dependent subagents, to enable both inter and intra-system interaction simulation, respectively. A layered structure of indicators at different aggregation levels is also developed, to ensure that decisions are not only data-driven but also explainable. Therefore, the proposed simulation framework can serve as a DSS tool that allows the quantitative analysis of the impact of threats at different levels. First, system-level metrics can be used to get a broad view on the city resilience. Then, agent-level metrics back those figures and provide better explainability. On implementation, the proposed framework enables component reusability (for eased coding), simulation federation (enabling the integration of existing system-oriented simulators), discrete simulation in accelerated time (for rapid scenario simulation) and decision-oriented visualization (for informed outputs). The system built under the proposed approach facilitates to simulate various risk mitigation strategies for a scenario under analysis, allowing decision-makers to foresee potential outcomes. A case study has been deployed on a framework prototype to demonstrate how the DSS can be used in real-world situations, specifically combining cyber hazards over health and traffic infrastructures. The proposal aims at pushing the boundaries of urban city simulation towards more real, intelligent, and automated frameworks.</p></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":\"133 \",\"pages\":\"Article 102924\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1569190X24000388/pdfft?md5=04ef681b2c9c771225ceb322adfb1cce&pid=1-s2.0-S1569190X24000388-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X24000388\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24000388","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Towards resilient cities: A hybrid simulation framework for risk mitigation through data-driven decision making
Providing a comprehensive view of the city operation and offering useful metrics for decision-making is a well-known challenge for urban risk-analysis systems. Existing systems are, in many cases, generalizations of previous domain specific tools/methodologies that may not cover all urban interdependencies and makes it difficult to have homogeneous indicators. In order to overcome this limitation while seeking for effective support to decision makers, this article introduces a novel hybrid simulation framework for risk mitigation. The framework is built on a proposed city concept that considers the urban space as a Complex Adaptive System composed by interconnected Critical Infrastructures. In this concept, a Social System, which models daily patterns and social interactions of the citizens in the Urban Landscape, drives the CIs demand to configure the full city picture. The framework's hybrid design integrates agent-based and network-based modeling by breaking down city agents into system-dependent subagents, to enable both inter and intra-system interaction simulation, respectively. A layered structure of indicators at different aggregation levels is also developed, to ensure that decisions are not only data-driven but also explainable. Therefore, the proposed simulation framework can serve as a DSS tool that allows the quantitative analysis of the impact of threats at different levels. First, system-level metrics can be used to get a broad view on the city resilience. Then, agent-level metrics back those figures and provide better explainability. On implementation, the proposed framework enables component reusability (for eased coding), simulation federation (enabling the integration of existing system-oriented simulators), discrete simulation in accelerated time (for rapid scenario simulation) and decision-oriented visualization (for informed outputs). The system built under the proposed approach facilitates to simulate various risk mitigation strategies for a scenario under analysis, allowing decision-makers to foresee potential outcomes. A case study has been deployed on a framework prototype to demonstrate how the DSS can be used in real-world situations, specifically combining cyber hazards over health and traffic infrastructures. The proposal aims at pushing the boundaries of urban city simulation towards more real, intelligent, and automated frameworks.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.