1+1$$ 维中的邓克尔-福克-普朗克方程

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
R. D. Mota, D. Ojeda-Guillén, M. A. Xicoténcatl
{"title":"1+1$$ 维中的邓克尔-福克-普朗克方程","authors":"R. D. Mota,&nbsp;D. Ojeda-Guillén,&nbsp;M. A. Xicoténcatl","doi":"10.1007/s00601-024-01898-1","DOIUrl":null,"url":null,"abstract":"<div><p>By replacing the spatial derivative with the Dunkl derivative, we generalize the Fokker-Planck equation in (1+1) dimensions. We obtain the Dunkl–Fokker–Planck eigenvalues equation and solve it for the harmonic oscillator plus a centrifugal-type potential. Furthermore, when the drift function is odd, we reduce our results to those of the recently developed Wigner–Dunkl supersymmetry.\n</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"65 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Dunkl–Fokker–Planck Equation in \\\\(1+1\\\\) Dimensions\",\"authors\":\"R. D. Mota,&nbsp;D. Ojeda-Guillén,&nbsp;M. A. Xicoténcatl\",\"doi\":\"10.1007/s00601-024-01898-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By replacing the spatial derivative with the Dunkl derivative, we generalize the Fokker-Planck equation in (1+1) dimensions. We obtain the Dunkl–Fokker–Planck eigenvalues equation and solve it for the harmonic oscillator plus a centrifugal-type potential. Furthermore, when the drift function is odd, we reduce our results to those of the recently developed Wigner–Dunkl supersymmetry.\\n</p></div>\",\"PeriodicalId\":556,\"journal\":{\"name\":\"Few-Body Systems\",\"volume\":\"65 2\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Few-Body Systems\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00601-024-01898-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-024-01898-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过用邓克尔导数代替空间导数,我们将福克-普朗克方程推广到 (1+1) 维。我们得到了邓克尔-福克-普朗克特征值方程,并对谐振子加上离心型势能进行了求解。此外,当漂移函数为奇数时,我们将结果还原为最近发展的维格纳-邓克尔超对称性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Dunkl–Fokker–Planck Equation in \(1+1\) Dimensions

The Dunkl–Fokker–Planck Equation in \(1+1\) Dimensions

The Dunkl–Fokker–Planck Equation in \(1+1\) Dimensions

By replacing the spatial derivative with the Dunkl derivative, we generalize the Fokker-Planck equation in (1+1) dimensions. We obtain the Dunkl–Fokker–Planck eigenvalues equation and solve it for the harmonic oscillator plus a centrifugal-type potential. Furthermore, when the drift function is odd, we reduce our results to those of the recently developed Wigner–Dunkl supersymmetry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Few-Body Systems
Few-Body Systems 物理-物理:综合
CiteScore
2.90
自引率
18.80%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures. Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal. The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信