加权图同态密度中多项式不等式的不可判定性

IF 1.2 2区 数学 Q1 MATHEMATICS
Grigoriy Blekherman, Annie Raymond, Fan Wei
{"title":"加权图同态密度中多项式不等式的不可判定性","authors":"Grigoriy Blekherman, Annie Raymond, Fan Wei","doi":"10.1017/fms.2024.19","DOIUrl":null,"url":null,"abstract":"<p>Many problems and conjectures in extremal combinatorics concern polynomial inequalities between homomorphism densities of graphs where we allow edges to have real weights. Using the theory of graph limits, we can equivalently evaluate polynomial expressions in homomorphism densities on <span>kernels W</span>, that is, symmetric, bounded and measurable functions <span>W</span> from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315134900186-0773:S2050509424000197:S2050509424000197_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$[0,1]^2 \\to \\mathbb {R}$</span></span></img></span></span>. In 2011, Hatami and Norin proved a fundamental result that it is undecidable to determine the validity of polynomial inequalities in homomorphism densities for graphons (i.e., the case where the range of <span>W</span> is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315134900186-0773:S2050509424000197:S2050509424000197_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$[0,1]$</span></span></img></span></span>, which corresponds to unweighted graphs or, equivalently, to graphs with edge weights between <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315134900186-0773:S2050509424000197:S2050509424000197_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$0$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315134900186-0773:S2050509424000197:S2050509424000197_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$1$</span></span></img></span></span>). The corresponding problem for more general sets of kernels, for example, for all kernels or for kernels with range <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315134900186-0773:S2050509424000197:S2050509424000197_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$[-1,1]$</span></span></img></span></span>, remains open. For any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315134900186-0773:S2050509424000197:S2050509424000197_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$a&gt; 0$</span></span></img></span></span>, we show undecidability of polynomial inequalities for any set of kernels which contains all kernels with range <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315134900186-0773:S2050509424000197:S2050509424000197_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\{0,a\\}$</span></span></img></span></span>. This result also answers a question raised by Lovász about finding computationally effective certificates for the validity of homomorphism density inequalities in kernels.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Undecidability of polynomial inequalities in weighted graph homomorphism densities\",\"authors\":\"Grigoriy Blekherman, Annie Raymond, Fan Wei\",\"doi\":\"10.1017/fms.2024.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many problems and conjectures in extremal combinatorics concern polynomial inequalities between homomorphism densities of graphs where we allow edges to have real weights. Using the theory of graph limits, we can equivalently evaluate polynomial expressions in homomorphism densities on <span>kernels W</span>, that is, symmetric, bounded and measurable functions <span>W</span> from <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315134900186-0773:S2050509424000197:S2050509424000197_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[0,1]^2 \\\\to \\\\mathbb {R}$</span></span></img></span></span>. In 2011, Hatami and Norin proved a fundamental result that it is undecidable to determine the validity of polynomial inequalities in homomorphism densities for graphons (i.e., the case where the range of <span>W</span> is <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315134900186-0773:S2050509424000197:S2050509424000197_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[0,1]$</span></span></img></span></span>, which corresponds to unweighted graphs or, equivalently, to graphs with edge weights between <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315134900186-0773:S2050509424000197:S2050509424000197_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$0$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315134900186-0773:S2050509424000197:S2050509424000197_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1$</span></span></img></span></span>). The corresponding problem for more general sets of kernels, for example, for all kernels or for kernels with range <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315134900186-0773:S2050509424000197:S2050509424000197_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[-1,1]$</span></span></img></span></span>, remains open. For any <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315134900186-0773:S2050509424000197:S2050509424000197_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$a&gt; 0$</span></span></img></span></span>, we show undecidability of polynomial inequalities for any set of kernels which contains all kernels with range <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240315134900186-0773:S2050509424000197:S2050509424000197_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\{0,a\\\\}$</span></span></img></span></span>. This result also answers a question raised by Lovász about finding computationally effective certificates for the validity of homomorphism density inequalities in kernels.</p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.19\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.19","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

极值组合学中的许多问题和猜想都涉及图的同态密度之间的多项式不等式,其中我们允许边具有实权。利用图极限理论,我们可以等价评估核 W(即从 $[0,1]^2 \到 \mathbb {R}$ 的对称、有界和可测函数 W)上同态密度的多项式表达式。2011 年,哈塔米和诺林证明了一个基本结果,即对于图元(即 W 的范围是 $[0,1]$,对应于无权重图,或等价于边权重在 $0$ 和 $1$ 之间的图),确定同态密度中多项式不等式的有效性是不可判定的。对于更一般的内核集,例如所有内核或范围为 $[-1,1]$ 的内核,相应的问题仍未解决。对于任意 $a>0$,我们证明了包含范围为 $\{0,a\}$ 的所有核集的多项式不等式的不可判定性。这一结果也回答了洛瓦兹提出的一个问题,即如何为核中同态密度不等式的有效性找到计算上有效的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Undecidability of polynomial inequalities in weighted graph homomorphism densities

Many problems and conjectures in extremal combinatorics concern polynomial inequalities between homomorphism densities of graphs where we allow edges to have real weights. Using the theory of graph limits, we can equivalently evaluate polynomial expressions in homomorphism densities on kernels W, that is, symmetric, bounded and measurable functions W from $[0,1]^2 \to \mathbb {R}$. In 2011, Hatami and Norin proved a fundamental result that it is undecidable to determine the validity of polynomial inequalities in homomorphism densities for graphons (i.e., the case where the range of W is $[0,1]$, which corresponds to unweighted graphs or, equivalently, to graphs with edge weights between $0$ and $1$). The corresponding problem for more general sets of kernels, for example, for all kernels or for kernels with range $[-1,1]$, remains open. For any $a> 0$, we show undecidability of polynomial inequalities for any set of kernels which contains all kernels with range $\{0,a\}$. This result also answers a question raised by Lovász about finding computationally effective certificates for the validity of homomorphism density inequalities in kernels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信