R. V. Shafigulin, K. Yu. Vinogradov, A. V. Bulanova, M. V. Kuznetsov, Yu. G. Morozov, A. V. Safonov, V. V. Podlipnov
{"title":"通过高温合成获得的基于碳纳米管和金属酞菁的 ORR 催化剂","authors":"R. V. Shafigulin, K. Yu. Vinogradov, A. V. Bulanova, M. V. Kuznetsov, Yu. G. Morozov, A. V. Safonov, V. V. Podlipnov","doi":"10.3103/S1061386224010084","DOIUrl":null,"url":null,"abstract":"<p>Bi- and trimetallic catalysts based on multi-walled carbon nanotubes (MWCNT) and metal (Me) phthalocyanines (Pc) (MePc) <b>(</b>MWCNT–CoPc–NiPc, MWCNT–CuPc–NiPc, MWCNT–CoPc–CuPc, and MWCNT–CoPc–CuPc–Pd) for electrochemical oxygen reduction reaction (ORR) were synthesized by high-temperature synthesis at 1000°C in an inert atmosphere. The obtained materials were characterized by scanning electron microscopy (SEM), low-temperature nitrogen absorption–desorption, and Raman spectroscopy. The change in textural characteristics and morphology of electrocatalysts during high-temperature synthesis was studied. It was shown that the nature of the metal significantly changes the physicochemical characteristics of electrocatalysts based on carbon nanotubes. The electrochemical experiment was carried out in the linear voltammetry algorithm using a three-electrode chamber with a rotating disk electrode. The main characteristics of the process of electroreduction of oxygen from an alkaline electrolyte<b>—</b>limiting diffusion current, potential half-waves, and initial reaction potential<b>—</b>were determined. MWCNT–CoPc–CuPc–Pd catalyst was found to exhibit the highest activity in the reaction of electrochemical oxygen reduction in an alkaline liquid, reaching high efficiency and corrosiveness as with platinum catalysts, with a decrease in activity after 1000 cycles of less than 7%.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 1","pages":"39 - 48"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ORR Catalysts Based on Carbon Nanotubes and Metal Phthalocyanines Obtained by High-Temperature Synthesis\",\"authors\":\"R. V. Shafigulin, K. Yu. Vinogradov, A. V. Bulanova, M. V. Kuznetsov, Yu. G. Morozov, A. V. Safonov, V. V. Podlipnov\",\"doi\":\"10.3103/S1061386224010084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bi- and trimetallic catalysts based on multi-walled carbon nanotubes (MWCNT) and metal (Me) phthalocyanines (Pc) (MePc) <b>(</b>MWCNT–CoPc–NiPc, MWCNT–CuPc–NiPc, MWCNT–CoPc–CuPc, and MWCNT–CoPc–CuPc–Pd) for electrochemical oxygen reduction reaction (ORR) were synthesized by high-temperature synthesis at 1000°C in an inert atmosphere. The obtained materials were characterized by scanning electron microscopy (SEM), low-temperature nitrogen absorption–desorption, and Raman spectroscopy. The change in textural characteristics and morphology of electrocatalysts during high-temperature synthesis was studied. It was shown that the nature of the metal significantly changes the physicochemical characteristics of electrocatalysts based on carbon nanotubes. The electrochemical experiment was carried out in the linear voltammetry algorithm using a three-electrode chamber with a rotating disk electrode. The main characteristics of the process of electroreduction of oxygen from an alkaline electrolyte<b>—</b>limiting diffusion current, potential half-waves, and initial reaction potential<b>—</b>were determined. MWCNT–CoPc–CuPc–Pd catalyst was found to exhibit the highest activity in the reaction of electrochemical oxygen reduction in an alkaline liquid, reaching high efficiency and corrosiveness as with platinum catalysts, with a decrease in activity after 1000 cycles of less than 7%.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"33 1\",\"pages\":\"39 - 48\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386224010084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386224010084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
ORR Catalysts Based on Carbon Nanotubes and Metal Phthalocyanines Obtained by High-Temperature Synthesis
Bi- and trimetallic catalysts based on multi-walled carbon nanotubes (MWCNT) and metal (Me) phthalocyanines (Pc) (MePc) (MWCNT–CoPc–NiPc, MWCNT–CuPc–NiPc, MWCNT–CoPc–CuPc, and MWCNT–CoPc–CuPc–Pd) for electrochemical oxygen reduction reaction (ORR) were synthesized by high-temperature synthesis at 1000°C in an inert atmosphere. The obtained materials were characterized by scanning electron microscopy (SEM), low-temperature nitrogen absorption–desorption, and Raman spectroscopy. The change in textural characteristics and morphology of electrocatalysts during high-temperature synthesis was studied. It was shown that the nature of the metal significantly changes the physicochemical characteristics of electrocatalysts based on carbon nanotubes. The electrochemical experiment was carried out in the linear voltammetry algorithm using a three-electrode chamber with a rotating disk electrode. The main characteristics of the process of electroreduction of oxygen from an alkaline electrolyte—limiting diffusion current, potential half-waves, and initial reaction potential—were determined. MWCNT–CoPc–CuPc–Pd catalyst was found to exhibit the highest activity in the reaction of electrochemical oxygen reduction in an alkaline liquid, reaching high efficiency and corrosiveness as with platinum catalysts, with a decrease in activity after 1000 cycles of less than 7%.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.