Daniel W. Coleman, Rebecca J. Wood, Michael Healey
{"title":"青蛙与水流:利用生命史特征和系统回顾,为澳大利亚新南威尔士州的溪流青蛙建立依赖水的功能组群","authors":"Daniel W. Coleman, Rebecca J. Wood, Michael Healey","doi":"10.1002/eco.2643","DOIUrl":null,"url":null,"abstract":"<p>Hydrological alteration has contributed to the global decline of stream frogs. Flows support stream frog reproduction, juvenile development, food resources, and maintain habitats for all life stages. At present, there is a lack of information regarding the specific water requirements necessary for the conservation of stream frogs. To address this gap, we developed a traits-based approach that serves as a valuable tool for grouping and prioritising water-dependent stream frog species to inform future research priorities and environmental flow design. In this study, we focussed on 53 Australian frog species and analysed eight species traits to develop water-dependent functional groups for stream frogs. We classified frogs based on their level of water dependency using an agglomerative hierarchical clustering analysis and a systematic review of water requirements and water management threats. The distinguishing traits that determined functional groups were: tadpole body type, egg clutch type, stream breeding habitat type, and documented association with flowing water and water permanence. Our study identified two distinct water-dependent groups: facultative stream spawners, capable of reproducing in both stream and non-stream habitats, and obligate stream spawners, restricted solely to stream habitats. Importantly, we highlight that the obligate stream spawners are the most sensitive group to within-channel flow alteration and should be prioritised for water management decisions in lotic environments. This study represents the first comprehensive overview of the importance of hydrology for stream frogs and identifies the critical need for additional research and validation to enhance our understanding of stream frog responses to flows regimes.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eco.2643","citationCount":"0","resultStr":"{\"title\":\"Frogs and flows: Using life-history traits and a systematic review to establish water-dependent functional groups for stream frogs in New South Wales, Australia\",\"authors\":\"Daniel W. Coleman, Rebecca J. Wood, Michael Healey\",\"doi\":\"10.1002/eco.2643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrological alteration has contributed to the global decline of stream frogs. Flows support stream frog reproduction, juvenile development, food resources, and maintain habitats for all life stages. At present, there is a lack of information regarding the specific water requirements necessary for the conservation of stream frogs. To address this gap, we developed a traits-based approach that serves as a valuable tool for grouping and prioritising water-dependent stream frog species to inform future research priorities and environmental flow design. In this study, we focussed on 53 Australian frog species and analysed eight species traits to develop water-dependent functional groups for stream frogs. We classified frogs based on their level of water dependency using an agglomerative hierarchical clustering analysis and a systematic review of water requirements and water management threats. The distinguishing traits that determined functional groups were: tadpole body type, egg clutch type, stream breeding habitat type, and documented association with flowing water and water permanence. Our study identified two distinct water-dependent groups: facultative stream spawners, capable of reproducing in both stream and non-stream habitats, and obligate stream spawners, restricted solely to stream habitats. Importantly, we highlight that the obligate stream spawners are the most sensitive group to within-channel flow alteration and should be prioritised for water management decisions in lotic environments. This study represents the first comprehensive overview of the importance of hydrology for stream frogs and identifies the critical need for additional research and validation to enhance our understanding of stream frog responses to flows regimes.</p>\",\"PeriodicalId\":55169,\"journal\":{\"name\":\"Ecohydrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eco.2643\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecohydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eco.2643\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2643","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Frogs and flows: Using life-history traits and a systematic review to establish water-dependent functional groups for stream frogs in New South Wales, Australia
Hydrological alteration has contributed to the global decline of stream frogs. Flows support stream frog reproduction, juvenile development, food resources, and maintain habitats for all life stages. At present, there is a lack of information regarding the specific water requirements necessary for the conservation of stream frogs. To address this gap, we developed a traits-based approach that serves as a valuable tool for grouping and prioritising water-dependent stream frog species to inform future research priorities and environmental flow design. In this study, we focussed on 53 Australian frog species and analysed eight species traits to develop water-dependent functional groups for stream frogs. We classified frogs based on their level of water dependency using an agglomerative hierarchical clustering analysis and a systematic review of water requirements and water management threats. The distinguishing traits that determined functional groups were: tadpole body type, egg clutch type, stream breeding habitat type, and documented association with flowing water and water permanence. Our study identified two distinct water-dependent groups: facultative stream spawners, capable of reproducing in both stream and non-stream habitats, and obligate stream spawners, restricted solely to stream habitats. Importantly, we highlight that the obligate stream spawners are the most sensitive group to within-channel flow alteration and should be prioritised for water management decisions in lotic environments. This study represents the first comprehensive overview of the importance of hydrology for stream frogs and identifies the critical need for additional research and validation to enhance our understanding of stream frog responses to flows regimes.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.